👤

FRstudy.me rend la recherche de réponses rapide et facile. Posez n'importe quelle question et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.

bonjour pouvez vous m’aidez s’il vous plaît merci beaucoup !​

Bonjour Pouvez Vous Maidez Sil Vous Plaît Merci Beaucoup class=

Sagot :

Réponse :

f(x) = (- 3 x + 7)/(x - 2)  et  g(x) = x² - 4 x + 1

1) déterminer l'ensemble de définition des fonctions f et g

f est définie pour  x - 2 ≠ 0  ⇔ x ≠ 2   ⇔  Df = R \ {2}

g est une fonction polynôme du second degré est définie sur R

2) dresser les tableaux de variations des fonctions f et g

f(x) = (- 3 x + 7)/(x - 2)

f est une fonction quotient dérivable sur  Df  et sa dérivée f ' est :

f '(x) = (u/v)' = (u'v - v'u)/v²

u(x) = - 3 x + 7  ⇒ u'(x) = - 3

v(x) = x - 2  ⇒ v'(x) = 1

f '(x) = (- 3(x - 2) - (- 3 x + 7))/(x - 2)²

       = (- 3 x + 6 + 3 x - 7)/(x - 2)²

f '(x) = - 1/(x - 2)²   or  (x - 2)² > 0  et  - 1  < 0  donc  f '(x) < 0 ⇒ f est décroissante sur Df

tableau de variation de f

             x  - ∞                             2                         + ∞

       f (x)    - 3→→→→→→→→→→ - ∞ || + ∞ →→→→→→→→→ - 3

                        décroissante               décroissante

 g(x) = x² - 4 x + 1

g est une fonction polynôme dérivable sur Dg = R  et sa dérivée g ' est :

g '(x) = 2 x - 4

       x    - ∞                        2                     + ∞

   g '(x)                 -             0            +

variations  + ∞ →→→→→→→ - 3 →→→→→→→→→ + ∞

 de g(x)      décroissante      croissante

3) a) déterminer la nature et les éléments caractéristiques de (Cf)

la courbe (Cf) est une hyperbole  décroissante  ayant  2 asymptotes

x = 2  (asymptote verticale et  y = - 3 (asymptote horizontale)

b) la courbe (Cg) est une parabole tournée vers le haut  caractérisée par son sommet de coordonnées (2 ; - 3) et son équation d'axe de symétrie   x = 2

4) déterminer l'intersection de (Cf) et (Cg) avec les axes du repère

l'intersection de (Cf) avec l'axe des abscisses :   f(x) = (- 3 x + 7)/(x - 2) = 0

⇔ - 3 x + 7 = 0  ⇔ x = 7/3   ⇒ (7/3 ; 0)  

l'intersection de (Cf) avec l'axe des ordonnées :   f(0) = (- 3 *0 + 7)/(0 - 2) = - 7/2  ⇒ (0 ; - 7/2)

l'intersection de (Cg) avec l'axe des abscisses :  

 g(x) = 0   ⇔ x² - 4 x + 1 = 0

Δ = 16 - 4 = 12  > 0  ⇒ 2 racines ≠

x1 = 4+2√3)/2 = 2+√3  ⇒ (2+√3 ; 0)

x2 = 4 - 2√3)/2 = 2 - √3  ⇒ (2-√3 ; 0)

l'intersection de (Cg) avec l'axe des ordonnées  ⇒ g(0) = 1  ⇒ (0 ; 1)

5) déterminer l'intersection de (Cf) et (Cg)

f(x) = g(x)  ⇔ (- 3 x + 7)/(x - 2) = x² - 4 x + 1

tu continue la résolution de cette équation   sachant  x = 2 est une valeur interdite

Explications étape par étape :