👤

Trouvez des solutions à vos problèmes avec FRstudy.me. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et résoudre n'importe quel problème.

Bonjour, je vous ai mis en PJ mon exercice de maths

J'ai réussi toutes les questions pour l'instant je pense jusqu'à la 2. b)
Pour montrer que Sn <= à ça j'ai raisonné ainsi, mais je ne sais pas si c'est correct:

un <= (3/4)^n-5 * u5 <=> un <= (3/4)^n * (3/4)^-5 * u5

Et donc, u5 <= (3/4)^5 * (3/4)^-5 * u5 <= u5 * 1
u6 <= (3/4)^6 * (3/4)^-5 * u5 <= u5 * 3/4
u7 <= (3/4)^7 * (3/4)^-5 * u5 <= u5 * (3/4)^2
...
un <= (3/4)^n-5 * u5

D'où Sn = u5 + u6 + u7 + ... +un <=> Sn <= u5 [1 + 3/4 + (3/4)^2 + ... + (3/4)^n-5]

Mais est ce qu'il manque pas quelque chose dans ma justification ? Dois-je démontrer préalablement que un est décroissante, ou bien citer une propriété démontrée dans une question précédente ?

Merci par avance


Bonjour Je Vous Ai Mis En PJ Mon Exercice De Maths Jai Réussi Toutes Les Questions Pour Linstant Je Pense Jusquà La 2 B Pour Montrer Que Sn Lt À Ça Jai Raisonné class=