FRstudy.me offre une plateforme collaborative pour trouver des réponses. Posez n'importe quelle question et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.
On considère un triangle ABC quelconque. On veut démontrer que les trois médiatrices dans le triangle ABC sont concourantes et que leur point d'intersection est le centre du cercle circonscrit au triangle. On appelle m, la médiatrice du segment [AB], m, la médiatrice du segment [AC] et m, la médiatrice du segment [BC]. On pourra faire une figure pour se faire une idée. 1. Démontrer que m, et m, ne sont pas parallèles. 2. On appelle O le point d'intersection de m, et m₂. a. Puisque O appartient à m,, quelle relation. existe-t-il entre les longueurs OA et OB ? b. De même, comparer les longueurs OA et OC. 3. a. Que peut-on en déduire sur les longueurs OB et OC ? b. Le point O appartient-il alors à m₂ ? 4. Quelle interprétation géométrique peut-on donner à la comparaison des trois longueurs OA, OB et OC ? 5. Conclure en résumant les propriétés démontrées.
Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Merci de visiter FRstudy.me. Nous sommes là pour vous fournir des réponses claires et précises.