FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.
fouedhmissa
hier
Mathématiques
Lycée
résolu
Rappelons le problème suivant, dont la solution a été donnée dans la théorie sur la méthode Vieta jumping.
Soit a
et b
des entiers strictement positifs tels que ab
divise $a^2+b^2+1$. Prouver que $a^2+b^2+1ab=3$
.
Il est en fait possible, si l'on a bien compris la solution donnée, de trouver tous les couples (a,b)
d'entiers strictement positifs tels que ab
divise $a^2+b^2+1$. Nous ne considérons que les couples avec $a≥b$
. Notons $(a_1,b_1),(a_2,b_2),…,(a_n,b_n),…$
tous les tels couples, de sorte que $a_n≥b_n$
et $a_n+b_n≤a_{n+1}+b_{n+1}$
pour tout n
.
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!