FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Notre plateforme est conçue pour fournir des réponses fiables et complètes à toutes vos questions, quel que soit le sujet.
Sagot :
Bonjour GIMS301
Deuxième option
Elle envisage de se servir chez un artisan qui produit des faïences du côté souhaité à condition que leur surface S soit inférieure à 100cm².
a) Exprimer le côté d'un carreau en fonction de S.
Si a est le côté d'un carré, alors [tex]a=\sqrt{S}[/tex]
b) Représenter à l'écran d’une calculatrice la fonction S→ √S sur l'intervalle [0 ; 100] en précisant la fenêtre graphique choisie.
Graphique en pièce jointe.
Fenêtre :
Xmin = 1
max : 101
Scale : 10
Ymin : -5
max : 15
Scale : 1
c) La décoratrice souhaite des carreaux de surface comprise entre 20 cm² et 50 cm².
S’aider du graphique précédent pour donner un encadrement du côté du carreau.
En utilisant le graphique proposé par la calculatrice et en déterminant les valeurs de [tex]\sqrt{20}[/tex] et de [tex]\sqrt{50}[/tex], nous lisons :
[tex]20\le S\le50\Longrightarrow \sqrt{20}\le \sqrt{S}\le\sqrt{50}\\\\20\le S\le50\Longrightarrow 4,47\le a\le7,07[/tex]
Par conséquent,
si a est la longueur du côté du carreau, alors [tex]\boxed{4,47\ cm\le a\le7,07\ cm}[/tex]
Deuxième option
Elle envisage de se servir chez un artisan qui produit des faïences du côté souhaité à condition que leur surface S soit inférieure à 100cm².
a) Exprimer le côté d'un carreau en fonction de S.
Si a est le côté d'un carré, alors [tex]a=\sqrt{S}[/tex]
b) Représenter à l'écran d’une calculatrice la fonction S→ √S sur l'intervalle [0 ; 100] en précisant la fenêtre graphique choisie.
Graphique en pièce jointe.
Fenêtre :
Xmin = 1
max : 101
Scale : 10
Ymin : -5
max : 15
Scale : 1
c) La décoratrice souhaite des carreaux de surface comprise entre 20 cm² et 50 cm².
S’aider du graphique précédent pour donner un encadrement du côté du carreau.
En utilisant le graphique proposé par la calculatrice et en déterminant les valeurs de [tex]\sqrt{20}[/tex] et de [tex]\sqrt{50}[/tex], nous lisons :
[tex]20\le S\le50\Longrightarrow \sqrt{20}\le \sqrt{S}\le\sqrt{50}\\\\20\le S\le50\Longrightarrow 4,47\le a\le7,07[/tex]
Par conséquent,
si a est la longueur du côté du carreau, alors [tex]\boxed{4,47\ cm\le a\le7,07\ cm}[/tex]
![View image Аноним](https://fr-static.z-dn.net/files/dd1/adfdf8608edea1e06bc8f7d53df3b93a.png)
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Vous avez des questions? FRstudy.me a les réponses. Merci pour votre visite et à bientôt.