Trouvez des solutions à vos problèmes avec FRstudy.me. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et résoudre n'importe quel problème que vous rencontrez.
Sagot :
Bonsoir,
Partie A.
1) Puisque le croquis doit être fait à l'échelle 1/100, Les longueurs données en mètres se dessineront en cm.
Ainsi, sur le croquis,
AD = 2,25 cm
AE = 2cm
HD = 5 cm.
2) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².
Or HI = HD - DI
= 5 - DI
= 5 - AE (puisque dans le rectangle AEID, AE = DI)
= 5 - 2 (puisque dans cette partie, AE = 2)
= 3
IE = AD = 2,25
Donc :
3) Dans le triangle rectangle HIE,
Partie B
1) L'angle .
L'angle
Sachant que dans un triangle la somme des 3 angles vaut 180°, nous avons :
Le triangle rectangle HIE est donc isocèle puisqu'il possède deux angles égaux à 45°
2) Le triangle HIE est isocèle avec le sommet principal en I.
Donc : HI = IE = 2,25.
Sachant que DI = AE et que DI = DH - HI = 5 - 2,25 = 2,75, nous en déduisons que DI = 2,75.
3) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².
HE² = 2,25² + 2,25²
HE² = 5,0625 + 5,0625
HE² = 10,125
Partie A.
1) Puisque le croquis doit être fait à l'échelle 1/100, Les longueurs données en mètres se dessineront en cm.
Ainsi, sur le croquis,
AD = 2,25 cm
AE = 2cm
HD = 5 cm.
2) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².
Or HI = HD - DI
= 5 - DI
= 5 - AE (puisque dans le rectangle AEID, AE = DI)
= 5 - 2 (puisque dans cette partie, AE = 2)
= 3
IE = AD = 2,25
Donc :
3) Dans le triangle rectangle HIE,
Partie B
1) L'angle .
L'angle
Sachant que dans un triangle la somme des 3 angles vaut 180°, nous avons :
Le triangle rectangle HIE est donc isocèle puisqu'il possède deux angles égaux à 45°
2) Le triangle HIE est isocèle avec le sommet principal en I.
Donc : HI = IE = 2,25.
Sachant que DI = AE et que DI = DH - HI = 5 - 2,25 = 2,75, nous en déduisons que DI = 2,75.
3) Le triangle HIE est rectangle en I.
Nous appliquerons le théorème de Pythagore : HE² = HI² + IE².
HE² = 2,25² + 2,25²
HE² = 5,0625 + 5,0625
HE² = 10,125
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Merci de visiter FRstudy.me. Nous sommes là pour vous fournir des réponses claires et précises.