FRstudy.me rend la recherche de réponses rapide et facile. Obtenez des réponses complètes à toutes vos questions de la part de notre réseau d'experts expérimentés.
Bonjour j'aimerais savoir si mes exercices sont corrects.
Exercice 116 :
Il faut développer chaque expressions en utilisant les identités remarquables.
A= (x-5)²
A= x²-2 × x × 5+5²
A= x²+10x+25
B= (9+x)(9-x)
B= 9²-x²
B= x²-81
C= (6+x)²
C= 6²+2 × x × 6+6²
C= 6²+12x+36
D= (8-2x)²
D= 8²-2 × 2x × 8+8²
D= 8²-16x²+64
E= (3x-2)(3x+2)
E= 3x²-2²
E= 3x²-4
F= (4x+7)²
F= 4x²+2 × 4x × 7+7²
F= 4x²+14x+49
Exercice 117 :
Factoriser chaque expression.
A= 7x+21
A= 7x+7 × 3
A= 7(x-3)
B= 36x²-24x
B= x²(36-24)
B= x²(12)
C= 4x(x+3)+(x+3)(3x-11)
C= (x+3)[4x(3x-11)]
C= (x+3)[(4x × 3x)-(4x × 11)]
C= (x+3)(12x²-44)
D= (5x-1)(9x-4)-(7x+4)(5x-1)
D= (5x-1)[(9x-4)-(7x+4)]
D= (5x-1)(3x-11x)
D= (5x-1)(-8x)
E= (3x+5)²-(3x+5)(-2x+13)
E= (3x+5)[(3x+5)²-(-2x+13)]
E= (3x+5)(16x-11x)
E= (3x+5)(5x)
F= 24-21x-(8-7x)(x-17)
F= 3x-[(8-7x)-(x-17)]
F= 3x(1x-17)
Exercice 118 :
J'ai une figure, un carré ABCD qui fait 2x+3 (longueur de chaque côtés) et à l'intérieur de ce grand carré j'en ai un plus petit qui fait x+1 sur chaque uns de ces côtés,c'est le carré AEFG.
Les longueurs sont exprimées en centimètres.
1- Exprimer l'aire de la partie hachurée (Tout le carré ABCD sans le carré AEFG) en fonction de x.
ABCD=[(2x+3)(2x+3)-(x+1)(x+1)]
2- Développer et réduire l'expression trouvée.
ABCD=[(2x+3)(2x+3)-(x+1)(x+1)]
ABCD= (25x-1x)
ABCD= 24x
3- Factoriser l'expression de la question 1.
Je sais pas.
4- Déterminer avec le moins de calculs possibles, l'aire de la partie hachurée pour :
a. x= 0 b. x= 2 c. 7 sur 2
Je sais pas.
