👤
Answered

Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Obtenez des réponses précises à vos questions grâce à notre communauté d'experts toujours prêts à fournir des solutions rapides et pertinentes.

un hopital comporte deux salles d'opération (S1 et S2) qui ont la même probabilité d'être occupées. la probabilité que l'une des salles au moins soit occupée est de 0,9; celle que les deux salles soient occupées vaut 0,5. Quelle est la probabilité : a) que la salle S1 soit libre ? b) que les deux salles soient libres ? c) que l'une des salles au moins soit libre ? d) qu'une salle soit libre ?



Sagot :

EXERCICE 2:

2 salles d'opérationS1 et S2 ont la même probabilité d'être occupées.

Première situation

Si  S1 est occupée et S2 est occupée, donc S1∪ S2 est l’une des salles est au moins

occupée » donc P(S1∪ S2) = 0,9
L’évènement S1∩ S2 est l’évènement « les 2 salles sont occupées » donc P(S1∩ S2) = 0,5
Or P(S1∪ S2) = P(S1) + P(S2) - P(S1∩ S2) donc P(S1) + P(S2) = 0,9 + 0,5 = 1,4
Or P(S1) = P(S2) puisque les 2 salles ont la même probabilité d’être occupées donc :
P(S1) = P(S2) = 1,4
2 = 0,7.
A = S1 donc P(A) = 1 – P(S1) = 1 – 0,7 = 0,3
B = S1 S2 donc P(B) = 1 - P(S1∪ S2) = 1 – 0,9 = 0,1
C = S1 S2 donc P(C) = 1 – P(S1∩ S2) = 1 – 0,5 = 0,5
P(D) = P(C) – P(B) = 0,5 – 0,1 = 0,4

 

 

Bon courage !

 

 

 

 

a= s1 donc p(a) =1(s1)=1-0,7=0,3

b=s1 s2 donc p(b) =1-p s1  s2 =1-0,9=0,1

c= s1 s2  donc p(c) = 1-p  s1  s2 = 1-0,5=0

p(d) = p(c) -p(b)=0,5-0,1=0,4

 

 

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Vous avez des questions? FRstudy.me a les réponses. Merci de votre visite et à très bientôt.