👤

Rejoignez FRstudy.me et commencez à obtenir les réponses dont vous avez besoin. Posez vos questions et obtenez des réponses détaillées et bien informées de la part de nos membres de la communauté dévoués.

une entreprise fabrique et vend un produit. On note f (x) le coût de production (exprimé en milliers d'euros) de x tonnes de ce produit.

pour [tex]0\leq x \leq 11[/tex], des études ont montré que : [tex]f(x)=x^(3)-12x^(2)+50x[/tex].

 

1a) Dresser un tableau de valeurs de la fonction f(donner à x les valeurs entiéres de 0 à 11.)

 

 b) Tracer sur l'intervalle [tex]\left[0;11\right] [/tex] la courbe représentative de la fonction f (unités : 1 cm pour 1 tonne en abscisses et 2 cm pour 100 000 euros en ordonnées).

 

2) L'entreprise vend son produit 30 000 € la tonne ; on note g(x) la recette exprimée en milliers d'euros et B(x) le bénéfice : [tex]B(x) = g(x)-f(x)[/tex] .

 

 a) Exprimer g(x) en fonction de x .

 

 b) Représenter graphiquement la fonction g dans le meme répère que la fonction f.

 

3a) Déterminer graphiquement les quantités de produit pour lesquelles l'entreprise est bénéficiaire.

 

 b) Développer [tex](x-2)(x-10)[/tex] .

 

 c) résoudre algébriquement l'inéquation B[tex]B(x)>0[/tex] .



Sagot :

1) f(x) = x(x² - 12x + 50)
                          0                          11
f(x)                     0              /          429

 

2) g(x) = 30x

 

3) a. pour 2 < x < 10
     b. (x-2)(x-10) = x² - 12x + 20
     c. B(x) = 30x - x(x² - 12x + 50) = -x(x² - 12x + 20) = -x(x-2)(x-10)
                      0                  2                     10                     11
-x                   0           -                     -                       -
x-2                              -      0             +                      +
x-10                           -                      -        0             +
B(x)                0         -       0             +       0              -

 

View image AzaXtra