Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Trouvez des réponses détaillées et précises de la part de notre communauté d'experts dévoués.
Sagot :
Bonjour,
J'aime bien cet exercice mais il faut changer son titre, je propose:
Comment démontrer une Lapalissade.
En effet le but de cet exercice, après avoir noyé le poisson est de démonter que 1²+2²+3²+...+n²=1/6* n(n+1)(2n+1)
On commence par P(n)=1/3 n^3 -1/2 n² +1/6 n= n/6* 2n²-3n+1)=1/6* n*(n-1)(2n-1)
Donc P(n+1)=1/6* (n+1)*n*(2(n+1)-1)=1/6 * n* (n+1)(2n+1) cqfd.
3a)
P(n+1)-P(n)=1/6 n(n+1)(2n+1) -1/6 n(n-1)(2n-1)
=1/6 *n[2b²+3n+1-(2n²-3n+1)]=1/6*n*6n=n².
3b)
P(1)=1/3-1^3-1/2*1²+1/6=(2-3+1)/6=0
P(2)=P(1)+1²=1²
P(3)=P(2)+2²=1²+2²
....
P(n+1)=P(n)+n²=1²+2²+3²+...+(n-1)²+n²
J'aime bien cet exercice mais il faut changer son titre, je propose:
Comment démontrer une Lapalissade.
En effet le but de cet exercice, après avoir noyé le poisson est de démonter que 1²+2²+3²+...+n²=1/6* n(n+1)(2n+1)
On commence par P(n)=1/3 n^3 -1/2 n² +1/6 n= n/6* 2n²-3n+1)=1/6* n*(n-1)(2n-1)
Donc P(n+1)=1/6* (n+1)*n*(2(n+1)-1)=1/6 * n* (n+1)(2n+1) cqfd.
3a)
P(n+1)-P(n)=1/6 n(n+1)(2n+1) -1/6 n(n-1)(2n-1)
=1/6 *n[2b²+3n+1-(2n²-3n+1)]=1/6*n*6n=n².
3b)
P(1)=1/3-1^3-1/2*1²+1/6=(2-3+1)/6=0
P(2)=P(1)+1²=1²
P(3)=P(2)+2²=1²+2²
....
P(n+1)=P(n)+n²=1²+2²+3²+...+(n-1)²+n²
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour encore plus de solutions.