On souhaite disposer la règle en diagonale dans la boite, donc on calcule la diagonale du rectangle. Pour cela on utilise le théorème de Pythagore.
On appelle le rectangle ABCD. On calcule donc l'hypoténuse du triangle ABD :
[tex] AB^{2} + AD^{2} = BD^{2} [/tex]
[tex]40^{2} + 20^{2} [/tex] = BD^{2} [/tex]
BD^{2} [/tex] = 2000
BD ≈ 44,7 cm
La diagonale de la base de la boîte mesure environ 44.7 cm, donc c'est la longueur de la plus longue règle pouvant être contenue dans cette boîte.