👤

FRstudy.me: où vos questions rencontrent des réponses expertes. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

je comprens pas moi aussi les racines carrées et ce que vous pouvez me dire en montrant bien les étapes (merci d'avance) :)



Sagot :

La racine carrée d'un nombre positif a, notée √a, est le nombre positif qui mis au carré donnera ce nombre a.

 

      Ainsi :         √4 = 2      parce que    2² = 4

                        √1 = 1      parce que    1² = 1

 

 

   N.B. :   Dans la notation √a, √ est appelé le radical et a le radicante.

 

 

→ La racine carré d'un nombre négatif n'existe pas dans l'ordre des réels car un carré est toujours positif :     par exemple            (-4)² = 16      et non pas -16 !

                             et donc       √(-4)² = √(16) = 4       mais    √(-4) n'existe pas.

 

 

 

 

Après, il existe quelques règles pour le calcul avec les racines carrées :

 

          √a × √b  =  √(a × b)

          √a : √b  =  √(a : b)

 

 /!\   Par contre on ne pourra pas faire :    √a + √b = √(a + b)    car c'est généralement faux,

                                                       ni   √a + √b = √(a + b)            pour la même raison.

 

 

 

 

 

il faut aussi penser à factoriser les racines carrées de même valeur. Par exemple :

 

         a√n  +  b√n   =   (a + b) √n

 


 

 

=============

 

Normalement, si l'on a compris ceci, on possède ce qu'il faut pour aborder sereinement le brevet en ce qui concerne les racines carrées.

 

 

 

Exemples :

----------------

 

3√5 - 4√45 + 2√125  =  3√5 - 4√(9 × 5) + 2√(25 × 5)

                              =  3√5 - 4√9 × √5 + 2√25 × √5

                              =  3√5 - 4 × 3 × √5 + 2 × 5 × √5

                              =  3√5 - 12√5 + 10√5

                              =  (3 - 12 + 10)√5

                              = √5

 

2√5 × 3√45 × 6√125   =  2 × 3 × 6 √(5 × 45 × 125)

                                =  36 √(5 × 9 × 5 × 25 × 5)

                                =  36 × 3 × 5 √(5 × 5 × 5)

                                =  36 × 15 × 5 √5

                                =  2700√5