👤

FRstudy.me facilite l'obtention de réponses détaillées à vos questions. Posez n'importe quelle question et recevez des réponses rapides et bien informées de notre réseau de professionnels expérimentés.

Dans une feuille de carton carrée de 20 cm de côté on enlève aux quatre coins un carré de x côté. On plie les bords ainsi obtenus pour créer une boïte sans couvercle.

a) établir le volume V de cette boîte en fonction de x

b) étudier les variations de la fonction V définie sur [0;10] par l'expression trouvée

c) déterminer la valeur de x pour laquelle le volume de cette boîte est maximal



Sagot :

V= (20-2x)^2 * x = 4x^3-80x^2+400x
Tracer la courbe sur l'intervalle [0,10]  elle a la forme d'une sinusoide, elle part de l'
origine et passe par un maximum proche de 600  cm cube pour x entre 3 et 4 

déterminer la valeur de x pour laquelle le volume de cette boîte est maximal ?
Il faut calculer la valeur qui annule la dérivée
Dérivée = 12x^2-160x+400  = 3x^2-40x+100
Delta = 1600 - 1200 = 400    Racine de delta = 20
x= (40-20) / 6 =10/3

Pour x = 10/3 le volume est maximum