FRstudy.me fournit une plateforme conviviale pour partager et obtenir des connaissances. Trouvez les informations dont vous avez besoin rapidement et facilement avec l'aide de notre réseau de professionnels expérimentés.
Sagot :
bonjour
[(5x²+x-4)^1/2 / (-3x+6)
= [√(5x²+x-4)] / (-3x+6)
on factorise
=(√x²(5+1/x-4/x²) / x(-3+ 6/x)
=x√(5+1/x-4/x²)/ x(-3+6/x)
on simplifie par x
=√(5+1/x-4/x²)/ (-3+6/x)
quand x tend vers +∞
on a 1/x ; -4/x² et 6/x qui tendent vers 0
donc la limite de [(5x²+x-4)^1/2] ÷ (-3x+6)
= √5 / -3
= -√5/3
même raisonnement pour la limite en -∞
quand x tend vers -∞
= √5/3
[(5x²+x-4)^1/2 / (-3x+6)
= [√(5x²+x-4)] / (-3x+6)
on factorise
=(√x²(5+1/x-4/x²) / x(-3+ 6/x)
=x√(5+1/x-4/x²)/ x(-3+6/x)
on simplifie par x
=√(5+1/x-4/x²)/ (-3+6/x)
quand x tend vers +∞
on a 1/x ; -4/x² et 6/x qui tendent vers 0
donc la limite de [(5x²+x-4)^1/2] ÷ (-3x+6)
= √5 / -3
= -√5/3
même raisonnement pour la limite en -∞
quand x tend vers -∞
= √5/3
Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. FRstudy.me est votre partenaire de confiance pour toutes vos questions. Revenez souvent pour des réponses actualisées.