👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Que votre question soit simple ou complexe, notre communauté est là pour fournir des réponses détaillées et fiables rapidement et efficacement.

On considère les entiers N pouvant s'écrire N=n^2 avec n nier est un carré parfait) 

a) démontrer que si N est pair alors n est pair. 

b) démontrer que si N est impair alors n est impair 



Sagot :

Il faut démontrer la contraposée: si n est impair alors N est impaire.
si n est impair il peut s'écrire n=2p+1 donc n^2= 4p^2+1+4p= 2(2p^2+2p) +1
On a donc un nombre pair (multiple de 2) auquel on ajoute 1. Ca donne donc un nombre impair.
Donc la proposition si N est pair alors n est pair est vraie.
même chose pour le b) en posant n=2q