Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Posez n'importe quelle question et recevez des réponses rapides et bien informées de la part de notre communauté d'experts expérimentés.
Sagot :
1.
a) Dans le repère (A,B,C) les coordonnées sont :
A (0;0)
B (1;0)
C (0;1)
M est le milieu de [AB] donc
M ([xa+xb]/2;[ya+yb]/2) = ([0+1]/2;[0+0]/2)
M (0.5;0)
N est le milieu de [AC]
N ([xa+xC]/2;[ya+yC]/2) = ([0+0]/2;[0+1]/2)
N (0;0.5)
P est le milieu de [BC]
P ([xb+xc]/2;[yb+yc]/2) = ([1+0]/2;[0+1]/2)
P (0.5;0.5)
Si Q, milieu de [MN] est le milieu de [AP] alors :
(xm+xn)/2 = (xa+xp)/2 et (ym+yn)/2 = (ya+yp)/2
(0+0.5)/2 = (0+0.5)/2 et (0+0.5)/2 = (0+0.5)/2
0.25 = 0.25 et 0.25 = 0.25
B) Donc Q est bien le milieu de [AP]
2.
A) On utilise le théorème des milieux :
On sait que dans le triangle ABC,
N est le milieu de [AC]
P est le milieu de [BC]
Or, dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté.
Donc les droites (NP) et (AM) sont parallèles.
On sait que dans le triangle ABC,
M est le milieu de [AB]
P est le milieu de [BC]
Or, dan sun triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté.
Donc les droites (MP) et (AN) sont parallèles.
Le quadrilatère AMPN a ses cotés opposés parallèles donc AMPN est un parallélogramme.
B) On sait que Q est le milieu de [MN] donc Q est le milieu du parallélogramme.
Or, le milieu d'un parallélogramme est le milieu de ses 2 diagonales.
Donc Q est le milieu de [AP]
a) Dans le repère (A,B,C) les coordonnées sont :
A (0;0)
B (1;0)
C (0;1)
M est le milieu de [AB] donc
M ([xa+xb]/2;[ya+yb]/2) = ([0+1]/2;[0+0]/2)
M (0.5;0)
N est le milieu de [AC]
N ([xa+xC]/2;[ya+yC]/2) = ([0+0]/2;[0+1]/2)
N (0;0.5)
P est le milieu de [BC]
P ([xb+xc]/2;[yb+yc]/2) = ([1+0]/2;[0+1]/2)
P (0.5;0.5)
Si Q, milieu de [MN] est le milieu de [AP] alors :
(xm+xn)/2 = (xa+xp)/2 et (ym+yn)/2 = (ya+yp)/2
(0+0.5)/2 = (0+0.5)/2 et (0+0.5)/2 = (0+0.5)/2
0.25 = 0.25 et 0.25 = 0.25
B) Donc Q est bien le milieu de [AP]
2.
A) On utilise le théorème des milieux :
On sait que dans le triangle ABC,
N est le milieu de [AC]
P est le milieu de [BC]
Or, dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté.
Donc les droites (NP) et (AM) sont parallèles.
On sait que dans le triangle ABC,
M est le milieu de [AB]
P est le milieu de [BC]
Or, dan sun triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté.
Donc les droites (MP) et (AN) sont parallèles.
Le quadrilatère AMPN a ses cotés opposés parallèles donc AMPN est un parallélogramme.
B) On sait que Q est le milieu de [MN] donc Q est le milieu du parallélogramme.
Or, le milieu d'un parallélogramme est le milieu de ses 2 diagonales.
Donc Q est le milieu de [AP]
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Pour des réponses de qualité, choisissez FRstudy.me. Merci et à bientôt sur notre site.