Obtenez des réponses claires et concises à vos questions sur FRstudy.me. Trouvez des réponses rapides et précises à vos questions grâce à notre réseau de professionnels expérimentés.
Sagot :
A(3;-2) B(7;2) M(4;m)
m appartient à l'ensemble R (R avec un double barre).
Le triangle ABM peut-être rectangle en 3 points :
- A
- B
- M
Si ABM est rectangle en M :
Dans le triangle ABM rectangle en M, d'après le théorème de Pythagore, on admet que :
AB² = AM² + BM²
d'après nos connaissances, on est censé connaitre les formules
AB=√(xA - xB)²+(yA - yB)²
AB² =(xA - xB)² + (yA - yB)²
Donc, pour répondre à la question on doit trouver AB² = BM² - AM² (exemple)
qui est égal à
(xA - xB)² + (yA - yB)² = (xB - xM)² + (yB - m)² - (xA - xM)² + (yA - m)²
(3-7)² + (-2-2)² = (7-4)² + (2-m)² - (3-4)² + (-2-m)²
4² + -4² = 3² + (2 - m)² - (-1)² + (-2 - m)²
32 = 9 + (2 - m)² - (-1)² + (-2 - m)
32 = 8 + (2 - m)² + (-2 - m)²
----- on sait que (a - b)²=a² + b² - 2*a*b -----
on a ainsi 32 = 8 + 2² + m² - 2*2*m + (-2)² + m² - 2*(-2)*m
32 = 8 + 4 + m² -4m + 4 + m² + 4m
0 = 16 + m² + m² - 32
0 = -16 + 2*m²
0/2 = -16/2 + 2*m²
0 = -8 + m²
m² = -8
donc m = √8 ou -√8 pour le triangle ABM rectangle en A.
Ensuite, tu répètes les opérations en changeant les valeurs en considérant le triangle rectangle en B puis en M et tu auras tes valeurs.
Je tiens à te préciser que je ne suis pas sûre de moi :)
bonne soirée !
m appartient à l'ensemble R (R avec un double barre).
Le triangle ABM peut-être rectangle en 3 points :
- A
- B
- M
Si ABM est rectangle en M :
Dans le triangle ABM rectangle en M, d'après le théorème de Pythagore, on admet que :
AB² = AM² + BM²
d'après nos connaissances, on est censé connaitre les formules
AB=√(xA - xB)²+(yA - yB)²
AB² =(xA - xB)² + (yA - yB)²
Donc, pour répondre à la question on doit trouver AB² = BM² - AM² (exemple)
qui est égal à
(xA - xB)² + (yA - yB)² = (xB - xM)² + (yB - m)² - (xA - xM)² + (yA - m)²
(3-7)² + (-2-2)² = (7-4)² + (2-m)² - (3-4)² + (-2-m)²
4² + -4² = 3² + (2 - m)² - (-1)² + (-2 - m)²
32 = 9 + (2 - m)² - (-1)² + (-2 - m)
32 = 8 + (2 - m)² + (-2 - m)²
----- on sait que (a - b)²=a² + b² - 2*a*b -----
on a ainsi 32 = 8 + 2² + m² - 2*2*m + (-2)² + m² - 2*(-2)*m
32 = 8 + 4 + m² -4m + 4 + m² + 4m
0 = 16 + m² + m² - 32
0 = -16 + 2*m²
0/2 = -16/2 + 2*m²
0 = -8 + m²
m² = -8
donc m = √8 ou -√8 pour le triangle ABM rectangle en A.
Ensuite, tu répètes les opérations en changeant les valeurs en considérant le triangle rectangle en B puis en M et tu auras tes valeurs.
Je tiens à te préciser que je ne suis pas sûre de moi :)
bonne soirée !
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.