Explorez une vaste gamme de sujets et obtenez des réponses sur FRstudy.me. Obtenez les informations dont vous avez besoin grâce à nos experts, qui fournissent des réponses fiables et détaillées à toutes vos questions.
Sagot :
1) f(x)=x²-3x = x² -2*3x/2+9/4-9/4 = (x-3/2)^2 - 9/4
(x-3/2)^2>=0
(x-3/2)^2-9/4>=-9/4
f(3/2)=-9/4
donc la fonction a un minimum en -9/4 pour x=3/2
donc f décroit de plus l'infini à -9/4 puis croit vers plus l'infini
2) f(x)=x²-3x= x(x-3)
donc les racines sont 0 et 3
les points d'intersections de la courbe avec l'axe des abscisses sont
A(0;0) et B(0;3)
b) graphiquement ça veut dire que tu traces la droite -x+3 et tu donnes les intervalles de x pour lesquelles f(x) est en dessous de la droite: de -1 à 3
c) Il faut que tu dises qu'entre les racines f(x)-(-x+3)<0 donc la courbe est en dessous de la courbe ce qui confirme l'observation graphique
(x-3/2)^2>=0
(x-3/2)^2-9/4>=-9/4
f(3/2)=-9/4
donc la fonction a un minimum en -9/4 pour x=3/2
donc f décroit de plus l'infini à -9/4 puis croit vers plus l'infini
2) f(x)=x²-3x= x(x-3)
donc les racines sont 0 et 3
les points d'intersections de la courbe avec l'axe des abscisses sont
A(0;0) et B(0;3)
b) graphiquement ça veut dire que tu traces la droite -x+3 et tu donnes les intervalles de x pour lesquelles f(x) est en dessous de la droite: de -1 à 3
c) Il faut que tu dises qu'entre les racines f(x)-(-x+3)<0 donc la courbe est en dessous de la courbe ce qui confirme l'observation graphique
Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.