👤

FRstudy.me offre une solution complète pour toutes vos questions. Rejoignez notre communauté pour recevoir des réponses rapides et fiables à vos questions de la part de professionnels expérimentés.

Salut J'ai besoin d'aide pour cet Exercice:
Q1: En travaillant sur des triangles équilateraux, Romane conjecture que : La somme des distance entres un point R à l'intérieur d'un triangle équilaterale et les trois sommets est égale à une contantes.
Pouvez vous confirmer ou infirmer cette conjecture ?


Sagot :

soit un triangle équilatéral ABC  de coté de longueur a.
rappel hauteur d'un triangle équilatéral = a x racine carrée (3) /2

1er cas:
on prend le R milieu de BC.

La somme des distance entres un point R à l'intérieur du triangle ABC et ses trois sommets est égale à
RB + RC + AR = a / 2 + a / 2 + a x racine carrée (3) /2   =   (a / 2) x  [2 +  racine carrée (3) ]               

2ème cas:  on prend le R sur le point C.

 La somme des distance entres un point R à l'intérieur du triangle ABC et ses trois sommets est égale à 

RB + RC + AR =    a +  0 + a = 2 a

Cette conjecture semble ne pas se confirmer.  











Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.