👤

FRstudy.me: votre destination pour des réponses précises et fiables. Découvrez des réponses détaillées et fiables à toutes vos questions de la part de nos membres de la communauté bien informés toujours prêts à assister.

Bonjour tout le monde j'ai un DM de mathématiques je n'arrive pas et personne ne veut m'aider a ce que vous pouvez m'aider svp je vous en supplie merci d'avance pour ce qui vont m'aider aider moi svp je vous en supplie et plus c'est pour demain svp aidez moi

Bonjour Tout Le Monde Jai Un DM De Mathématiques Je Narrive Pas Et Personne Ne Veut Maider A Ce Que Vous Pouvez Maider Svp Je Vous En Supplie Merci Davance Pour class=

Sagot :

Bonjour,

Regarde la figure jointe. Attention les lettres utilisées ne sont pas les mêmes que sur la figure de l'énoncé.

1) On construit le triangle OAB, rectangle en A avec :

OA = 1 cm et AB = 1 cm

D'après le théorème de Pythagore, on a :

OB² = OA² + AB² = 1 + 1 = 2

Donc OB = √2

2) On construit un second triangle OBC, rectangle en B, ayant pour côté :

OB = √2 et BC = 1

On aura alors : OC² = OB² + BC² = 2 + 1 = 3

Donc OC = √3

3) Pour obtenir un segment de longueur √11, il faut tracer 10 triangles rectangles.

A chaque étape, la longueur de l'hypoténuse est égale à la racine carrée de la longueur de l'hypoténuse précédente au carré plus 1 :

√2 = √(1² + 1²)
√3 = √((v2² + 1²)
√4 = √(√3² + 1²)
√5 = √(√4² + 1²)
√6 = √(√5² + 1²)
√7 = √(√6² + 1²)
√8 = √(√7² + 1²)
√9 = √(√8² + 1²)
√10 = √(√9² + 1²)
√11 = √(√10² + 1²)

4) a) 11 = 1² + 1² + 3²

On trace un premier triangle rectangle de côtés :

1 cm et 3 cm.

L'hypoténuse vaut alors : √(1² + 3²) = √10 cm

Puis un second triangle rectangle de côtés :

√10 cm et 1 cm

On obtient alors une hypoténuse de longueur :

√(√10² + 1²) = √11

5) a)

D'après ce qu'a démontré Lagrange, tout entier n > 0

s'écrit comme la somme de au plus 4 carrés :

n = a² + b² + c² + d²  avec a,b,c,et d 4 entiers naturels

On a vu que 11 était la somme de 3 carrés et que l'on pouvait construire une longueur de √11 avec seulement 2 triangles.

n étant la somme de, au plus, 4 carrés, on peut construire √n avec (4 - 1) = 3 triangles rectangles.

b)

On recherche une décomposition de 75 en somme de carrés :

75 = 64 + 11 = 8² + 3² + 1² + 1²

On a trouvé que 75 était la somme de 4 carrés.

On peut donc tracer un segment de longueur √75 avec (4 -1) = 3 triangles.

On trace un premier triangle rectangle de côtés :

1 et 3 cm

On obtient une hypoténuse de √(3² + 1²) = √10

On trace un second triangle rectangle de côtés :

√10 et 1 cm

On obtient une hypoténuse de : √(√10² + 1²) = √11

Enfin un troisième triangle rectangle de côté :

√11 et 8

On obtient une hypoténuse de : √(√11² +8²) = √75
View image Scoladan
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Revenez sur FRstudy.me pour des réponses fiables à toutes vos questions. Merci de votre confiance.