👤

FRstudy.me: où vos questions rencontrent des réponses expertes. Trouvez des solutions rapides et fiables à vos problèmes avec l'aide de notre communauté d'experts dévoués.

merci de m'aider svp urgent avec une corde de 80m un géomètre délimite un terrain qui a la forme d'un triangle ABC,rectangle en A. le coté AB mesure 16m on note x, la longueur AC.
1) exprimer, en fonction de x, la longueur BC
2) résoudre une équation afin de trouver les longueurs AC et BC
svp merci


Sagot :

Bonjour ;

1) Le triangle ABC est rectangle en A , donc en appliquant le théorème de Pythagore , on a :

BC²=16²+x²=256+x² donc [tex]BC= \sqrt{ x^{2} +256x} [/tex] .

2) Le périmètre du triangle ABC est : AB+BC+AC = 80 m , donc :

[tex]16+ \sqrt{ x^{2} +256} +x=80 [/tex]

⇒ [tex] \sqrt{ x^{2} +256} =64[/tex]

⇒[tex] \sqrt{ x^{2} +256}= 64-x[/tex]

⇒[tex] \sqrt{ x^{2} +256} ^{2} = (64-x)^{2} [/tex]

⇒[tex] x^{2} +256= 64^{2} -128 x+ x^{2} =4096-128 x+ x^{2} [/tex]

⇒[tex]0=-128 x + 3840[/tex]

⇒ [tex]x= \frac{3840}{128} =30 m[/tex]

donc AC=x=30m

et [tex]BC= \sqrt{ x^{2} +256} = \sqrt{900+256} = \sqrt{1156} = 34 m [/tex] .
bonjour,

1) ABC rectangle en A,
pythagore

BC² = 16²+x²
BC  = √(16+x²) = 4+x

2) BC² = AB²+AC²
(4+x)² = 16²+x²
16+8x+x² = 256+x²
x²+8x-x² = 256-16
8x = 240
x = 30

AB =16m
AC = 30m
BC = 30+4 = 34
Merci d'être un membre actif de notre communauté. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons atteindre de nouveaux sommets de connaissances. Revenez sur FRstudy.me pour des réponses fiables à toutes vos questions. Merci pour votre confiance.