Recevez des conseils d'experts et un soutien communautaire sur FRstudy.me. Posez n'importe quelle question et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.
Sagot :
Bonjour !
La formule reliant le nombre de côté d'un polygone au total de ses angles intérieurs est : [tex](n-2)* 180^{°} = totalangleinterieur[/tex].
Ici on a toute les informations qu'il faut :
[tex](n-2)*180= 1 799640 \\ n-2= \frac{1799640}{180} \\ n= \frac{1799640-360}{180} \\ Donc \\ n= 9996[/tex]
Le polygone à donc 9 996 côtés
La formule reliant le nombre de côté d'un polygone au total de ses angles intérieurs est : [tex](n-2)* 180^{°} = totalangleinterieur[/tex].
Ici on a toute les informations qu'il faut :
[tex](n-2)*180= 1 799640 \\ n-2= \frac{1799640}{180} \\ n= \frac{1799640-360}{180} \\ Donc \\ n= 9996[/tex]
Le polygone à donc 9 996 côtés
Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour encore plus de solutions.