Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises et complètes à toutes vos questions pressantes.
Sagot :
Bonjour Pocahontas8
Soit x le nombre de parties donnant un gain de 10 jetons.
Sachant que la moyenne est 15, nous avons l'équation :
[tex]\dfrac{40\times0+91\times5+x\times10+124\times30}{40+91+x+124}=15\\\\\\\dfrac{0+455+10x+3720}{x+255}=15\\\\\\\dfrac{10x+4175}{x+255}=15\\\\\\10x+4175=15(x+255)\\\\10x+4175=15x+3825\\\\15x-10x=4175-3825\\\\5x=350\\\\x=\dfrac{350}{5}\\\\\boxed{x=70}[/tex]
Par conséquent, 70 parties ont eu un gain de 10 jetons.
Calcul de la variance et de l'écart-type :
[tex]V=\dfrac{40(0-15)^2+91(5-15)^2+70(10-15)^2+124(30-15)^2}{325}\\\\V=\dfrac{47750}{325}\\\\\sigma=\sqrt{V}=\sqrt{\dfrac{47750}{325}}\\\\\boxed{\sigma\approx12,12}[/tex]
Par conséquent, l'écart-type est de 12,12 (arrondi à 0,01 près)
Soit x le nombre de parties donnant un gain de 10 jetons.
Sachant que la moyenne est 15, nous avons l'équation :
[tex]\dfrac{40\times0+91\times5+x\times10+124\times30}{40+91+x+124}=15\\\\\\\dfrac{0+455+10x+3720}{x+255}=15\\\\\\\dfrac{10x+4175}{x+255}=15\\\\\\10x+4175=15(x+255)\\\\10x+4175=15x+3825\\\\15x-10x=4175-3825\\\\5x=350\\\\x=\dfrac{350}{5}\\\\\boxed{x=70}[/tex]
Par conséquent, 70 parties ont eu un gain de 10 jetons.
Calcul de la variance et de l'écart-type :
[tex]V=\dfrac{40(0-15)^2+91(5-15)^2+70(10-15)^2+124(30-15)^2}{325}\\\\V=\dfrac{47750}{325}\\\\\sigma=\sqrt{V}=\sqrt{\dfrac{47750}{325}}\\\\\boxed{\sigma\approx12,12}[/tex]
Par conséquent, l'écart-type est de 12,12 (arrondi à 0,01 près)
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Merci de visiter FRstudy.me. Nous sommes là pour vous aider avec des réponses claires et concises.