👤

Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Obtenez des réponses précises et complètes de la part de nos membres de la communauté bien informés et prêts à aider.

Bonjour j'ai un soucis pour résoudre ce système d'inéquations, vous pouvez m'aider svp?

\[tex] \left \{ {-x^{2}+9x+10 \geq 0} \atop {-2x+15 \leq 0}} \right. [/tex]

 

Avec comme rappel pour l'exercice : Les solutions de ce système sont, s'ils existent, les nombres qui appartiennent simultanément à chacun des ensembles de solutions des deux inéquations.



Sagot :

L'ensemble des solutions de ce systèmes est l'ensemble des x tel que (-x^2 + 9 x + 10 > ou égal à 0) et (- 2 x + 15 < ou égal à 0).
On cherche les racines de l'équation -x^2 + 9 x + 10 = 0 dont delta = 121 càd x1 = 10 et x2 = -1, et comme le facteur de x^2 est négatif donc -x^2 + 9 x + 10 > ou égal à 0 est vraie pour les x entre les racines, donc pour [-1 ; 10].
On cherche aussi la racine de - 2 x + 15 qui est 15/2 , donc - 2 x + 15 < ou égal à 0 est vraie pour x appartenant à [15/2 ; + infini[, donc l'ensemble des solutions du système est l'intersection de [-1 ; 10] et [15/2 ; + infini[ càd [15/2 ; 10]
X : (-x^2 +9x+10> égal à 0 / (-2+15< égal à 0
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses de qualité, choisissez FRstudy.me. Merci et à bientôt sur notre site.