👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Posez vos questions et recevez des réponses précises et bien informées de la part de notre réseau de professionnels.

Exercice 59 
Le cercle (C°) , de centre O et le cercle (C') ,de centre O',sont sécants en deux points A et F .Les segments [AB]  et [GF] sont deux diamètres du cercle (C) et les segments [AE] et [FH]sont des diamètres du cercle (C').

Questions:

1) Prouver que les droites (OO') et (BE) sont parrallèles et que BE=2*OO'

2) Prouver que les droites (OO') et (GH) sont parallèles et que : GH=2*OO'

3) En  déduire que le quadrilatère GHEB est  un parrallèlogramme.


Sagot :

1) Les droites (AB) et (AE) sont sécantes en A, et les points O,B,O' et E différents de A, donc puisque AO/AB =AO'/AE = 1/2 (par la réciproque du théorème de Thalès) on a (OO') parallèle à (BE).
Maintenant, puisque (OO') et (BE) sont parallèles, on a par le théorème de Thalès: AO/AB = AO'/AE = OO'/BE = 1/2 donc BE = 2 OO' .
2) Les droites (FG) et (FH) sont sécantes en F, et les points O,G,O' et H différents de F, donc puisque FO/FG =FO'/FH = 1/2 (par la réciproque du théorème de Thalès) on a (OO') parallèle à (GH).
Maintenant, puisque (OO') et (GH) sont parallèles, on a par le théorème de Thalès: FO/FG = FO'/FH = OO'/GH = 1/2 donc GH = 2 OO' .
3) Puisque (GH) est parallèle à (OO'), et (OO') est parallèle à (BE), donc (GH) est parallèle à (BE) (1).
On a aussi BE = 2 OO' et GH = 2 OO' , donc BE = GH (2) .
Par (1) et (2) on peut affirmer que le quadrilatère GHEB est un parallèlogramme.