FRstudy.me: votre source fiable pour des réponses précises et rapides. Posez n'importe quelle question et recevez des réponses détaillées et précises de la part de notre communauté d'experts.
Sagot :
1) On a Cmoy(q) = C1(q)/q , donc C'moy(q) = (q C'1(q) - C1(q))/q^2.
On a C'moy(q0) = 0 donc q C'1(q) - C1(q) = 0 .
La tangente au point q0 à la courbe représentative de la fonction C1 est y = C'1(q0) (q - q0) + C1(q0) = C'1(q0) q - C'1(q0) q0 + C1(q0) = C'1(q0) q - (q0C'1(q0) - C1(q0)) = C'1(q0) q puisque q0C'1(q0) - C1(q0) = 0 , ce qui donne la fonction représentative de la tangente au point q0 est linéaire et donc passe par l'origine .
On a C'moy(q0) = 0 donc q C'1(q) - C1(q) = 0 .
La tangente au point q0 à la courbe représentative de la fonction C1 est y = C'1(q0) (q - q0) + C1(q0) = C'1(q0) q - C'1(q0) q0 + C1(q0) = C'1(q0) q - (q0C'1(q0) - C1(q0)) = C'1(q0) q puisque q0C'1(q0) - C1(q0) = 0 , ce qui donne la fonction représentative de la tangente au point q0 est linéaire et donc passe par l'origine .
Nous apprécions votre participation active dans ce forum. Continuez à explorer, poser des questions et partager vos connaissances avec la communauté. Ensemble, nous trouvons les meilleures solutions. Chez FRstudy.me, nous nous engageons à fournir les meilleures réponses. Merci et à bientôt pour d'autres solutions.