👤

FRstudy.me: où vos questions rencontrent des réponses expertes. Nos experts sont prêts à fournir des réponses rapides et détaillées à toutes les questions que vous pourriez avoir.

Bonjour bonjour, j'aurais besoin d'aide pour cet exercice s'il vous plaît ;D

ABCD est un carré et x un nombre réel
On note M,N,P et Q les points définit par :
AM=xAB , BN=xBC , CP=xCD et DQ=xDA
a) Démontrer que :
MP=(1-2x)AB+AD et NQ=(1-2x)BC+CD
b) en déduire que MP.NQ=0
c) Démontrer que MNPQ est un carré


Sagot :

→=MA→+AP→=MA→+AD→+DP→MP→=MA→+AP→=MA→+AD→+DP→, or on sait que MA→=−xAB→MA→=−xAB→, et DP→=DC→+CP→=DC→+xCD→=(1−x)DC→=(1−x)AB→DP→=DC→+CP→=DC→+xCD→=(1−x)DC→=(1−x)AB→ car ABCD est un carré.
Donc en remettant ces deux expressions dans celle de départ on a normalement ce qu'on veut.
Je te laisse faire la deuxième égalité, sur le même principe.
Ensuite pour le produit scalaire, il s'agira de remplacer les deux vecteurs par leurs expressions et de "développer" le produit voilà