FRstudy.me est votre ressource incontournable pour des réponses expertes. Nos experts fournissent des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.
Sagot :
On considère la fonction f définie sur R \ {0} par :
f(x) = 2+1/|x|
1. demontrer que pour tout réel non nul x, on a f(x) > 2
|x|>0 donc 1/|x|>0 donc 2+1/|x|>
donc f(x)>2
2. Ecrire f(x), sans barres de valeur absolue, suivant les valeurs de x
si x<0 alors f(x)=2-1/x
si x>0 alors f(x)=2+1/x
3 Demontrer que f est décroissante sur l'intervalle ]0 ; +∞[ & croissante sur l'intervalle ] -∞ ; 0[
soit g(x)=1/x d'après le cours g est décroissante sur l'intervalle ]0 ; +∞[
donc f est décroissante sur l'intervalle ]0 ; +∞[
de même
d'après le cours g est croissante sur l'intervalle ] -∞ ; 0[
donc f est décroissante sur l'intervalle ] -∞ ; 0[
5 Resoudre l'équation f(x) = k où k désigne un réel strictement superieur à 2
k>2
donc 2+1/|x|=k>2
soit k=2+p
alors 1/|x|=p avec p>0
donc x=-1/p ou x=1/p
donc x=1/(2-k) ou x=1/(k-2)
f(x) = 2+1/|x|
1. demontrer que pour tout réel non nul x, on a f(x) > 2
|x|>0 donc 1/|x|>0 donc 2+1/|x|>
donc f(x)>2
2. Ecrire f(x), sans barres de valeur absolue, suivant les valeurs de x
si x<0 alors f(x)=2-1/x
si x>0 alors f(x)=2+1/x
3 Demontrer que f est décroissante sur l'intervalle ]0 ; +∞[ & croissante sur l'intervalle ] -∞ ; 0[
soit g(x)=1/x d'après le cours g est décroissante sur l'intervalle ]0 ; +∞[
donc f est décroissante sur l'intervalle ]0 ; +∞[
de même
d'après le cours g est croissante sur l'intervalle ] -∞ ; 0[
donc f est décroissante sur l'intervalle ] -∞ ; 0[
5 Resoudre l'équation f(x) = k où k désigne un réel strictement superieur à 2
k>2
donc 2+1/|x|=k>2
soit k=2+p
alors 1/|x|=p avec p>0
donc x=-1/p ou x=1/p
donc x=1/(2-k) ou x=1/(k-2)
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Pour des réponses rapides et fiables, consultez FRstudy.me. Nous sommes toujours là pour vous aider.