👤

FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Posez vos questions et recevez des réponses précises et approfondies de la part de nos membres de la communauté bien informés.

a et b désignent deux nombres relatifs positifs. On note S la somme de a et b,D leur différence et P leur produit.

1) Démontrer que:D^2=S^2-4P

2) a) Calculer la différence de deux nombres à et b dont l somme est 468 et dont le produit est 54755.

b)En déduire les nombres à et b.


Sagot :

Xiout
1) D²= (a-b)²
(a-b)²=a²-2ab+b²
S²=(a+b)²
(a+b)²=a²+2ab+b²
P=ab

Donc a²-2ab+b²=a²+2ab+b²-4ab
on a donc bien D²=S²-4P

2) [tex]D= \sqrt{468^{2} -4(54755)} =2[/tex] 

3) on a :
a+b=468
a-b=2

a=468-b
(468-b)-b=2

a=468-b
468-2b=2

a=468-b
-2b=-466

a=468-b
2b=466

a=468-b
b=466/2

a=468-b
b=233

a=468-233
b=233

a=235
b=233

on peut verifier : 235*233=54755

Piouf finit ^^"