Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Explorez une grande variété de sujets et trouvez des réponses fiables de la part de nos membres de la communauté expérimentés.
Sagot :
Bonsoir,
Si j'en crois ton énoncé, nous avons la fonction f telle que:
f(x)=(R³/24[tex] \pi [/tex]²)*x²*(√(4[tex] \pi [/tex])²-x²)
Nous avons une fonction de type f(x)=u(x)v(x) donc sa dérivée f' est de la forme (u'v+uv') donc:
f'(x)=2x(R³/24[tex] \pi [/tex]²)(√(4[tex] \pi [/tex])²-x²)-2x(R³/24[tex] \pi [/tex]²)
f'(x)=2x(R³/24[tex] \pi [/tex]²)(√((4[tex] \pi [/tex])²-x²)-1)
Pour étudier les variations, nous allons étudier le signe de f'.
Comme x∈[0.2[tex] \pi [/tex]] donc 2x(R³/24[tex] \pi [/tex]²)>0
donc le signe de f' dépend de (√(4[tex] \pi [/tex]²)-x²)-1:
-x²+2[tex] \pi [/tex]+1=0
Δ=b²-4ac=0-4(2pi+1)(-1)
Δ=4(2pi+1)
x(1)=2√(pi+1)
x(2)=-2√(pi+1)
Donc f'(x)≥0 si x∈[-2√(pi+1);2√(pi+1)] donc f croissante sur cette intervalle
f'(x)≤0 si x∈]-∞;-2√(pi+1)]U[2√(pi+1)] donc f décroissante sur cette intervalle
Si j'en crois ton énoncé, nous avons la fonction f telle que:
f(x)=(R³/24[tex] \pi [/tex]²)*x²*(√(4[tex] \pi [/tex])²-x²)
Nous avons une fonction de type f(x)=u(x)v(x) donc sa dérivée f' est de la forme (u'v+uv') donc:
f'(x)=2x(R³/24[tex] \pi [/tex]²)(√(4[tex] \pi [/tex])²-x²)-2x(R³/24[tex] \pi [/tex]²)
f'(x)=2x(R³/24[tex] \pi [/tex]²)(√((4[tex] \pi [/tex])²-x²)-1)
Pour étudier les variations, nous allons étudier le signe de f'.
Comme x∈[0.2[tex] \pi [/tex]] donc 2x(R³/24[tex] \pi [/tex]²)>0
donc le signe de f' dépend de (√(4[tex] \pi [/tex]²)-x²)-1:
-x²+2[tex] \pi [/tex]+1=0
Δ=b²-4ac=0-4(2pi+1)(-1)
Δ=4(2pi+1)
x(1)=2√(pi+1)
x(2)=-2√(pi+1)
Donc f'(x)≥0 si x∈[-2√(pi+1);2√(pi+1)] donc f croissante sur cette intervalle
f'(x)≤0 si x∈]-∞;-2√(pi+1)]U[2√(pi+1)] donc f décroissante sur cette intervalle
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. FRstudy.me est toujours là pour vous aider. Revenez pour plus de réponses à toutes vos questions.