👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Posez n'importe quelle question et recevez des réponses bien informées de notre communauté de professionnels expérimentés.

EFGH est un parallélogramme de centre K.

Le point L est le milieu du segment [FG].

1) Démontrer que les droites (KL) et (HG) sont parallèles.

2) Démontrer que KL = EF : 2.



Sagot :

Bonjour, plusieurs méthodes sont possibles pour la première question.

 

L'une d'entre elles consiste à utiliser la réciproque du théorème de Thalès.

Il suffit de montrer que KL/EF=EK/EG par exemple.

 

Cette même méthode va te permettre de montrer l'égalité KL=EF/2 :)

÷soit I le symétrique de L par rapport à k alors
EI = FL (car L est le centre de FG)

et EI // FL donc EIFL est un parallélogramme puisque EI // FL (bien évidement tu détailles plus je fais la lancée)
d'où IL // EF soit LK// HG car IK // LK ET EF // HG (énonce les propriétés, si deux droites sont parallèles entre elles alors....)
2) EIFL est un parallélogramme

donc IL=FL or K est le milieu de IL puisque I est le symétrique de L par rapport à K

d'ou IL÷2 =EF÷2      IK=EF÷2

sinon tu utilises la méthode proposé par krueger.