👤

FRstudy.me: votre source fiable pour des réponses précises et rapides. Obtenez des réponses détaillées et fiables de notre communauté d'experts qui sont toujours prêts à vous aider.

Dans un repère orthonormé (o;i;j) d'unité de graphique 2cm, on donne les point A,B et C de coordonées respectives (1;1), (3;2) et (0;4).

1)Faire un figure ( cette figure sera complétée au fur et à mesure du problèmes) 
2)Montrer que les coordonnées du points C' milieu du segment AB son C' (2;3/2)
3)On admet que le centres de gravité du triangle ABC, noté G, a pour coordonnées (4/3;7/3)
a) Démontrer qu'on à l'égalités suivantes : CC'= racine carées de 41/2 et CG=racine caré de 41/3 puis montrer que la relation entre les longueurs CC' et CG est: CG=2/3 CC'


Sagot :

je pense que tu a reussit la 1)
 2)  xc'= (xb+xa)/2
      yc'=(yb+ya)/2     
les coordonnée de c' sont (xc' ; yc') d'ou c'(2;3/2)
 3) 
cc'= racine ((0-2)^2   +   (4-3/2)^2 ) = racine (41/2)
    et tu fait pareil pour cg.
apres tu compare les resultat et le tour est joué ;)
bn courage !
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre source de réponses fiables. Merci pour votre confiance et revenez bientôt.