👤

Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Découvrez des réponses détaillées et précises à vos questions de la part de nos membres de la communauté bien informés et dévoués.

Salut, j'ai deux questions d'un devoir maison que je ne comprend pas du tout est je voudrais savoir la réponse à ces questions avec une explication à celles-ci svp.

Merci d'avance ^^

 

En utilisant (1+x)², calculer Sn= 1+2+3+...+n ou n est un entier naturel.

En utilisant  (1+x)³, calculer Sn=1²+2²+3²+...+n² ou n est un entier naturel.

 


Sagot :

Bonsoir,
 Calculons [tex]S_n=1+2+3+...+n[/TEX]

[tex](1+x)^2 = 1 + 2\times x + x^2[/tex]
Dans cette égalité remplaçons x successivement par 1, 2, 3, ... , n.
[tex]\left\{\begin{array}l (1+1)^2=1+2\times 1 + 1^2\\(1+2)^2=1+2\times 2 + 2^2\\(1+3)^2=1+2\times 3 + 3^2\\...\\(1+n)^2=1+2\times n + n^2\end{array}\Longleftrightarrow \left\{\begin{array}l 2^2=1+2\times 1 + 1^2\\3^2=1+2\times 2 + 2^2\\4^2=1+2\times 3 + 3^2\\...\\(1+n)^2=1+2\times n + n^2\end{array}[/tex]
Ajoutons membre à membre ces équations entre elles.
[tex]2^2+3^2+4^2+...+(1+n)^2 = (1+1+1+...+1)+(2\times1+2\times2+2\times3+...+2\times n)+(1^2+2^2+3^2+...+n^2)\\2^2+3^2+4^2+...+(1+n)^2 = (1+1+1+...+1)+2(1+2+3+...+n)+(1^2+2^2+3^2+...+n^2)\\2^2+3^2+4^2+...+(1+n)^2 = n+2\times S_n+1^2+2^2+3^2+...+n^2[/tex]
Soustrayons dans chaque membre les termes identiques.
[tex](1+n)^2 = n+2\times S_n+1^2\\(1+n)^2 = 2\times S_n+(n+1)\\2S_n=(1+n)^2-(n+1)\\2S_n=(1+n)\times[(1+n)-1]\\2S_n=(1+n)\times n\\S_n = \dfrac{(1+n)\times n}{2}\\\boxed{1+2+3+...+n=\dfrac{n(n+1)}{2}}[/tex]
*************************************************************************************
 Calculons [tex]T_n=1^2+2^2+3^2+...+n^2[/tex]

[tex](1+x)^3 = 1^3 + 3\times 1^2\times x + 3\times 1\times x^2+x^3[/tex]
Dans cette égalité remplaçons x successivement par 1, 2, 3, ... , n.
[tex]\left\{\begin{array}l (1+1)^3 = 1^3 + 3\times 1^2\times 1 + 3\times 1\times 1^2+1^3\\(1+2)^3 = 1^3 + 3\times 1^2\times 2 + 3\times 1\times 2^2+2^3\\(1+3)^3 = 1^3 + 3\times 1^2\times 3 + 3\times 1\times 3^2+3^3\\...\\(1+n)^3 = 1^3 + 3\times 1^2\times n + 3\times 1\times n^2+n^3\end{array} [/tex]
[tex]\Longleftrightarrow \left\{\begin{array}l 2^3 = 1 + 3\times 1 + 3\times 1^2+1^3\\3^3 = 1 + 3\times 2 + 3\times 2^2+2^3\\4^3 = 1 + 3\times 3 + 3\times 3^2+3^3\\...\\(1+n)^3 = 1 + 3\times n + 3\times n^2+n^3\end{array}[/tex]
Ajoutons membre à membre ces équations entre elles, regroupons suivant la même méthode que dans la première partie et soustrayons dans chaque membre les termes identiques.
Il restera [tex](1+n)^3=n+3(1+2+3+...+n)+3(1^2+2^2+3^2+...+n^2) + 1\\(1+n)^3=n+3(1+2+3+...+n)+3\times T_n + 1[/tex]
Or, dans la 1ère partie, nous avons démontré que : [tex].1+2+3+...+n=\dfrac{n(n+1)}{2}[/tex]
Par conséquent : 
[tex](1+n)^3=n+\dfrac{3n(n+1)}{2}+3\times T_n + 1\\(1+n)^3=3\times T_n+\dfrac{3n(n+1)}{2}+n+ 1\\3T_n=(1+n)^3-\dfrac{3n(n+1)}{2}-(n+1)\\3T_n=(1+n)[(1+n)^2-\dfrac{3n}{2}-1]\\3T_n=(1+n)[1+2n+n^2-\dfrac{3n}{2}-1]\\3T_n=(1+n)(n^2+\dfrac{n}{2})\\3T_n=n(1+n)(n+\dfrac{1}{2})\\3T_n=n(1+n)(\dfrac{2n+1}{2})\\3T_n=n(1+n)(n+\dfrac{1}{2})\\T_n=n(1+n)(\dfrac{2n+1}{6})\\\boxed{T_n=\dfrac{n(n+1)(2n+1)}{6}}[/tex]