Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Découvrez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses fiable et complète.
Sagot :
Aire du cylindre⇒diamètre 4,5m donc rayon 2,25m
2π×2,25×3,5=49,48m²m
Aire de de la demi sphère
4π×2,25²/2=31,80m²
Aire totale
31,80+49,48=81,28m²
Quantité de peinture monocouche
81'28÷12=6,77 litres de peinture
2π×2,25×3,5=49,48m²m
Aire de de la demi sphère
4π×2,25²/2=31,80m²
Aire totale
31,80+49,48=81,28m²
Quantité de peinture monocouche
81'28÷12=6,77 litres de peinture
Bonsoir
♤ Tout d'abord on calcule l'aire
du cylindre on a donc :
Aire = 2π × r × h
Aire = 2π×2,25m × 3,50m
Aire = 2π×7.875
Aire = 15,75π m²
●Conclusion : L'aire du cylindre est de 15,75π m²
♤ Maintenant calculant l'aire de la demisphère on a donc :
Aire = 2π × r²
Aire = 2π × 2,25²
Aire = 10,125π m²
●Conclusion : L'aire du demisphère est de 10,125π m²
♤ Puis calculant l'aire totale du cylibdre on a donc :
15,75π + 10,125π = 25,875π m²
d'où 25,875×3,14 = 81,2 m²
●Conclusion : L'aire du cylindre est de 25,875π m² = 81,2 m²
♤ Maintenant qu'on connais l'aire totale du cylindre on peut déterminer la quantité de peinture monocouche que cet astronome aura besoin on résolvant un petit produit en croix on a donc :
12 m²---> 1 l
81,2 m²---> x l
D'où x = 81,2 m²×1 l / 12 m² = environ 6,76 litres soit 7 litre
●Conclusion : la quantité de peinture monocouche que cet astronome aura besoin est 7 litre .....
Voilà ^^
♤ Tout d'abord on calcule l'aire
du cylindre on a donc :
Aire = 2π × r × h
Aire = 2π×2,25m × 3,50m
Aire = 2π×7.875
Aire = 15,75π m²
●Conclusion : L'aire du cylindre est de 15,75π m²
♤ Maintenant calculant l'aire de la demisphère on a donc :
Aire = 2π × r²
Aire = 2π × 2,25²
Aire = 10,125π m²
●Conclusion : L'aire du demisphère est de 10,125π m²
♤ Puis calculant l'aire totale du cylibdre on a donc :
15,75π + 10,125π = 25,875π m²
d'où 25,875×3,14 = 81,2 m²
●Conclusion : L'aire du cylindre est de 25,875π m² = 81,2 m²
♤ Maintenant qu'on connais l'aire totale du cylindre on peut déterminer la quantité de peinture monocouche que cet astronome aura besoin on résolvant un petit produit en croix on a donc :
12 m²---> 1 l
81,2 m²---> x l
D'où x = 81,2 m²×1 l / 12 m² = environ 6,76 litres soit 7 litre
●Conclusion : la quantité de peinture monocouche que cet astronome aura besoin est 7 litre .....
Voilà ^^
Nous sommes ravis de vous compter parmi nos membres. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous pouvons créer une ressource de connaissances précieuse. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à bientôt.