👤

FRstudy.me vous aide à trouver des réponses précises à vos questions. Posez vos questions et obtenez des réponses détaillées et fiables de la part de notre communauté d'experts expérimentés.

Bonjour  , j'ai commencer mon dm en maths mais j'aurais  besoin d'un peu d'aide avec cette excercice :

 

Une entreprise développe des jeux , le coût total en milliers d'euros est de :

[tex]C(x)=50x-0,1x^{2}+10 [/tex]  avec [tex]x[/tex] appartient [0;100]

 

La recette est alors de : [tex]R(x)=48x[/tex]

Le bénéfice est la différence entre la recette et le coût total .

 

a. Exprimer le bénéfice en fontion de [tex]x[/tex]

b.A partir de combien de jeux vidéo l'entreprise est-elle bénéficiaire ?

c.Montrer que [tex]B(x)=0,1(x-10)^{2}-20[/tex]

d. En déduire le déficit maximal de l'entreprise et le nombre de jeux vidéo à produire pour y parvenir .

e.En déduire le bénéfice maximal de l'entreprise.

 

( Je n'arrive pas a démarrer l'exercice )



Sagot :

Bonsoir,

a) Bénéfice B(x) = Recette - Coût total de fabrication
[tex]B(x) = R(x)-C(x)\\\\B(x) = 48x-(50x-0,1x^2+10)\\\\B(x) = 48x-50x+0,1x^2-10\\\\B(x) = 0,1x^2-2x-10[/tex]

b) Résoudre l'inéquation  [tex]B(x)\ge0[/tex]

[tex]0,1x^2-2x-10\ge0[/tex]

Discriminant du trinôme : (-2)² - 4 * 0,1 * (-10) = 4 + 4 = 8
Racines du trinôme : environ -4,14 et 24,14.
Tableau de signes : 
[tex]\begin{array}{|c|ccccccc|} x&-\infty&&-4,14&&24,14&&+\infty \\ 0,1x^2-2x-10&&+&0&-&0&+&\\ \end{array}[/tex]
Puisque x ≥ 0, le bénéfice sera maximal si x ≥ 24,14, ce qui représente un nombre de jeux vidéos supérieur ou égal à 25 000.

c) [tex]B(x) = 0,1x^2-2x-10[/tex]

[tex]B(x) = 0,1(x^2-20x-100)[/tex]

Or   [tex](x-10)^2=x^2-20x+100\Longrightarrow x^2-20x=(x-10)^2-100[/tex]

Donc   [tex]B(x) = 0,1[(x-10)^2-100-100][/tex]

[tex]B(x) = 0,1[(x-10)^2-200]\\\\B(x) = 0,1(x-10)^2-20[/tex]

d) La forme canonique de B(x) est  [tex]B(x)=a(x-\alpha)^2+\beta[/tex]

Puisque a = 0,1 > 0, la fonction B admet un minimum [tex]\beta[/tex].
Ce minimum est atteint pour  [tex]x=\alpha[/tex]

Dans notre cas, le bénéfice sera minimal si x = 10 et ce minimum est égal à -20, ce qui représente un déficit maximal.
Donc, le déficit maximal de l'entreprise est égal à 20 000 € pour une production de 10000 jeux vidéos.

2) Le bénéfice maximal se calcule par B(100) = 0,1(100-10)²-20 = 790.

Ce bénéfice maximal est égal à 790 000 €
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Pour des réponses de qualité, visitez FRstudy.me. Merci et revenez souvent pour des mises à jour.