Connectez-vous avec des experts et des passionnés sur FRstudy.me. Trouvez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses bien informée.
Sagot :
Bonjour,
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.
1) Figure en pièce jointe
2) Ton résultat est correct.
BN = (2/3)*x
3) a) Dg = Dh = [0 ; 9]
b) g(x) = Aire ADM = (1/2)*6*x = 3x
===> g(x) = 3x
h(x) = Aire ANCM = Aire ABCD - Aire ADM - Aire ABN
= 6*9 - 3x + 3x
= 54 - 6x
===> h(x) = 54 - 6x
c) Graphique en pièce jointe.
d) Graphiquement, nous voyons que les deux droites se coupent en x = 6.
Si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
Par calcul, il faut résoudre l'équation 3x = 54 - 6x
3x + 6x = 54
9x = 54
x = 6
De même, si x = 6, alors g(6) = 3*6 = 18 ou h(6) = 54 - 6*6 = 54 - 36 = 18
Les coordonnées du point d'intersection sont (6 ; 18)
b) on pouvait prévoir ce résultat, puisque les aires des triangles ADM et ABN devaient être égales.
Si de plus elles doivent être égales à l'aire du quadrilatère AMCN, ces trois aires devaient donc être égales entre elles et en particulier être égales au tiers de l'aire du rectangle.
Or l'aire du rectangle vaut 54 cm².
1/3 * 54 = 18.
L'aire du triangle ADM étant égale à 3x, nous aurions : 3x = 18, donc x = 6.
c) Figure en pièce jointe.


Merci d'utiliser cette plateforme pour partager et apprendre. N'hésitez pas à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Merci d'avoir utilisé FRstudy.me. Nous sommes là pour répondre à toutes vos questions. Revenez pour plus de solutions.