Profitez au maximum de vos questions avec les ressources d'FRstudy.me. Découvrez des solutions rapides et fiables à vos problèmes grâce à notre plateforme de questions-réponses bien informée.
Sagot :
Bonjour
Il faut représenter le cercle trigonométrique.
1) Les points du cercle trigonométrique représentant 5pi/6 et pi/6 sont symétriques par rapport à l'axe des ordonnées.
Donc :
[tex]sin(\dfrac{5\pi}{6})=sin(\dfrac{\pi}{6})=\dfrac{1}{2}\\\\cos(\dfrac{5\pi}{6})=-cos(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{5\pi}{6})=-tan(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{3}[/tex]
2) Les points du cercle trigonométrique représentant 7pi/6 et pi/6 sont symétriques par rapport au centre du cercle trigonométrique (origine du repère).
Donc :
[tex]sin(\dfrac{7\pi}{6})=-sin(\dfrac{\pi}{6})=-\dfrac{1}{2}\\\\cos(\dfrac{7\pi}{6})=-cos(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{7\pi}{6})=tan(\dfrac{\pi}{6})=\dfrac{\sqrt{3}}{3}[/tex]
3) Les points du cercle trigonométrique représentant 11pi/6 et pi/6 sont symétriques par rapport à l'axe des abscisses.
Donc :
[tex]sin(\dfrac{11\pi}{6})=-sin(\dfrac{\pi}{6})=-\dfrac{1}{2}\\\\cos(\dfrac{11\pi}{6})=cos(\dfrac{\pi}{6})=\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{11\pi}{6})=-tan(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{3}[/tex]
Il faut représenter le cercle trigonométrique.
1) Les points du cercle trigonométrique représentant 5pi/6 et pi/6 sont symétriques par rapport à l'axe des ordonnées.
Donc :
[tex]sin(\dfrac{5\pi}{6})=sin(\dfrac{\pi}{6})=\dfrac{1}{2}\\\\cos(\dfrac{5\pi}{6})=-cos(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{5\pi}{6})=-tan(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{3}[/tex]
2) Les points du cercle trigonométrique représentant 7pi/6 et pi/6 sont symétriques par rapport au centre du cercle trigonométrique (origine du repère).
Donc :
[tex]sin(\dfrac{7\pi}{6})=-sin(\dfrac{\pi}{6})=-\dfrac{1}{2}\\\\cos(\dfrac{7\pi}{6})=-cos(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{7\pi}{6})=tan(\dfrac{\pi}{6})=\dfrac{\sqrt{3}}{3}[/tex]
3) Les points du cercle trigonométrique représentant 11pi/6 et pi/6 sont symétriques par rapport à l'axe des abscisses.
Donc :
[tex]sin(\dfrac{11\pi}{6})=-sin(\dfrac{\pi}{6})=-\dfrac{1}{2}\\\\cos(\dfrac{11\pi}{6})=cos(\dfrac{\pi}{6})=\dfrac{\sqrt{3}}{2}\\\\tan(\dfrac{11\pi}{6})=-tan(\dfrac{\pi}{6})=-\dfrac{\sqrt{3}}{3}[/tex]
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour encore plus de solutions.