👤

Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Obtenez des réponses précises et complètes à vos questions de la part de notre communauté de professionnels bien informés.

Bonjour, et merci d'avance a ceux qui pourront m'aider, je bloque sur un exercice de mon dm de maths;
La pyramide SABCD est telle que:
- La base ABCD est un carré de centre H tel que AC = 12 cm
- Les faces latérales sont des triangles isocèles en S
- La hauteur [SH] mesure 8 cm
La pyramide SA'B'C'D' est une réduction de SABCD telle que SA' = 3 cm et (A'B') // (AB)

1) Calculer la longeur SA. (réussi)
2) Montrer que AB = 6√2 (réussi)
3) Calculer l'aire du carré ABCD et le volume de SABCD
4) Calculer A'B'
5) Calculer le coefficient de réduction
6) Calculer l'aire du carré A'B'C'D' et le volume de la pyramide réduite SA'B'C'D'.
 
Encore merci d'avance!


Sagot :

Bonsoir,

1) SA² = SH² + HA² = 8² + 6² = 64 + 36 = 100
[tex]SA=\sqrt{100}=10\ cm[/tex]

2) AB² = AH² + HB² = 6² + 6² = 36 + 36 = 72
[tex]Ab=\sqrt{72}=\sqrt{36\times2}=\sqrt{36}\times\sqrt{2}=6\sqrt{2}\ cm[/tex]

3) [tex]Aire\ de\ ABCD = (6\sqrt{2})^2=36\times2=72\ cm^2[/tex]
[tex]Volume\ de\ SABCD=\dfrac{1}{3} \times\ Aire\ ABCD\ \times\ hauteur\\\\Volume\ de\ SABCD=\dfrac{1}{3} \times 72\times8=192\ cm^3[/tex]

4) Thalès dans le triangle SAB avec (A'B') parallèle à (AB)

[tex]\dfrac{A'B'}{AB}=\dfrac{SA'}{SA}\\\\\dfrac{A'B'}{6\sqrt{2}}=\dfrac{3}{10}\\\\A'B'=6\sqrt{2}\times\dfrac{3}{10}\\\\A'B'=\dfrac{18\sqrt{2}}{10}\\\\A'B'=\dfrac{9\sqrt{2}}{5}\ cm[/tex]

5) Le coefficient de réduction des longueurs est égal à [tex]k = \dfrac{A'B'}{AB}=\dfrac{3}{10}[/tex]

6) [tex]Aire\ A'B'C'D'=k^2\times Aire\ ABCD[/tex]

[tex]=(\dfrac{3}{10})^2\times72=0,09\times 72 = 6,48\ cm^2[/tex]


[tex]Volume\ SA'B'C'D'=k^3\times Volume\ SABCD\\\\=(\dfrac{3}{10})^3\times192=0,027\times192=5,184\ cm^3[/tex]
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Pour des réponses rapides et fiables, consultez FRstudy.me. Nous sommes toujours là pour vous aider.