Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Rejoignez notre plateforme de questions-réponses interactive pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.
Sagot :
1) a) (3-i)(-1+2i) = -3+6i +i -2i² = -3+2 + 7i = -1+7i
b) [tex]\dfrac{2-3i}{1-3i} = \dfrac{(2-3i)(1+3i)}{(1-3i)(1+3i)} = \dfrac{2+6i-3i+9}{1+9}=(1/10)(11+3i)[/tex]
c) [tex](1+i)^8 = ((1+i)^2)^4= (1+2i+i^2)^4 = (2i)^4= 16 i^4 = 16 i^2 i^2 = 16[/tex]
2) je vois pas les dernières coordonnées
mais l'idée c'est de chercher D tel que les vecteurs AB et DC soient égaux
(en montrant qu'ils sont colinéaires et de même norme)
3) 3iz +2 = z+3i donc (3i-1)z = 3i-2 donc [tex]z=\dfrac{3i-2}{3i-1} = \dfrac{2-3i}{1-3i} =(1/10)(11+3i)[/tex] (d'après 1)b))
z(barre) +1 = 2z - 4i
Posons z = a+ib avec a,b des réels, on a donc z(barre) = a-ib
donc en remplacant : a-ib +1 = 2(a+ib)-4i
soit : a-2a -ib-2ib = -1-4i ou encore -a-3bi = -1-4i
par identification : a=1 et b = 4/3
donc z = 1+(4/3)i
z²-2z+5 = 0
discriminant : Δ=4-4*5*1 = 4-20 = -16 <0
donc cette équation admet des racines complexes distinctes :
z1= (2-4i)/2 = 1-2i et z2= 1+2i
donc les solutions sont z=1-2i et son conjugué z(barre) = 1+2i
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Revenez sur FRstudy.me pour des solutions fiables à toutes vos questions. Merci pour votre confiance.