👤

Trouvez des réponses à vos questions avec l'aide de la communauté FRstudy.me. Rejoignez notre plateforme de questions-réponses pour recevoir des réponses rapides et précises de professionnels dans divers domaines.

Bonjour j'ai un DM pour demain et c'est galère je n'y arrive pas c'est resoudre les inequations suivantes : (x²+x-6)(x+1)<0 ET (2-x)(x²+3x-4)<0



Sagot :

Pour (x²+x-6)(x+1)<0 :

x²+x-6
début en : (x+1/2)² = x² + x + 1/4

x²+x-6 = (x+1/2)² - 1/4 - 6
= (x+1/2)² - 1/4 - 24/4
= (x+1/2)² - 25/4
= (x+1/2)² - (5/2)²
= (x+1/2-5/2)(x+1/2+5/2)
= (x-2)(x+3)

(x²+x-6)(x+1)<0
devient donc :
(x-2)(x+3)(x+1) < 0

risque = 0 pour :
x = 2 ou x = -3 ou x = -1

puis tableau de variation :
x: -oo -3  -1   2 +oo

(x-2) - - - - -| +
(x+3) - | + + + + +
(x+1) - - - | + + +

f(x)  + | - | + | -
pas forcément très lisible :(

f(x) < 0 pour x appartenant à l'ensemble ]-oo;-3[ U ]-1;2[

et pour (2-x)(x²+3x-4)<0 :

x²+3x-4
début en : (x+3/2)² = x² + 3x + 9/4
 
x²+3x-4
= (x+3/2)² - 9/4 - 4
= (x+3/2)² - 9/4 - 16/4
= (x+3/2)² - 25/4
= (x+3/2)² - (5/2)²
= (x+3/2-5/2)(x+3/2+5/2)
= (x-1)(x+4)

(2-x)(x²+3x-4)<0
devient donc :
(2-x)(x-1)(x+4) < 0

risque = 0 pour :
x = 2 ou x = 1 ou x = -4

puis tableau de variation :
x: -oo -4   1   2 +oo

(2-x) + + + + + | -
(x-1) - - - | + + +
(x+4) - | + + + + +

f(x)  + | - | + | -
pas forcément très lisible (à vérifier quand même par rapport à ton cours)

f(x) < 0 pour x appartenant à l'ensemble ]-4;1[ U ]2;+oo[

En espérant t'avoir aidé

Merci de contribuer à notre discussion. N'oubliez pas de revenir pour découvrir de nouvelles réponses. Continuez à poser des questions, à répondre et à partager des informations utiles. Revenez sur FRstudy.me pour des solutions fiables à toutes vos questions. Merci pour votre confiance.