👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Découvrez les solutions fiables dont vous avez besoin avec l'aide de notre plateforme de questions-réponses complète et précise.

Soit ABCD un parallélogramme. On appelle I le milieu de [CD] et E le symétrique de A par rapport à I.
1 - Montrer que ACED est un parallélogramme.
2 - Montrer que C est le milieu de [BE].


Un très merci à la personne qui m'aidera
J'essaie depuis un bon moment mais y a rien à faire, j'y arrive pas...


Sagot :

1) montrer que ACED est un parallélogramme

I milieu de CD ⇒ IC = ID

E symétrique de A par rapport à I ⇒ IA = IE

AE  et CD sont les diagonales de ACED

⇒ donc les diagonales AE et CD se coupent au même milieu et AE ≠ CD

⇒ donc ACED est un parallélogramme

2) montrer que C est le milieu de (BE)

puisque ACED est un parallélogramme ⇒ AD = CE

et sachant que AD = BC  ⇒ BC = CE  ⇒ C est le milieu de BE