👤

Explorez une multitude de sujets et trouvez des réponses fiables sur FRstudy.me. Trouvez des réponses détaillées et fiables de la part de notre réseau de professionnels expérimentés.

ABCD est un rectangle où AB= 4 et AD= 10.
M est un point du segment [BC].

Peut-on trouver une ou plusieurs positions de M de façon que le triangle AMD soit rectangle en M?

1) Réaliser la figure à l'aide d'un logiciel de géométrie dynamique et conjecturer:
-le nombre de positions possibles de M répondant au problème;
-la position sur le segment [BC] (éventuellement approchée) du (ou des) point(s) M répondant au problème.

2) On pose x=BM
a. A quel intervalle appartient la variable x?
b. Montrer que le problème revient à résoudre l'équation:
(E) : 2x² - 20x + 32 = 0
c. Vérifier que 2x² - 20x + 32 = 2(x-8)(x-2)
d. Résoudre le problème et comparer avec les conjectures de la question 1)

Pouvez vous m'aider, je bloque à la question 1 et à la d du petit 2.
Merci d'avance.



Sagot :

Tiens je pense que ça peut t'aider.
1) Tu vas trouver 2 positions de M  avec BM=2 ou BM=8

2) a)
  Le point M se déplace sur  [BC] donc x[0;10].

b)
Tu appliques Pythagore .
Il faut AD²=AM²+MD²
On a : AD²=100
Tu trouves AM² dans le triangle ABM rectangle en B.
Tu trouves MD² dans le triangle MCD  rectangle en C.
On arrive bien à :
2x²-20x+32=0

c)
Tu développes 2(x-8)(x-2)
et tu as 2x²-20x+32.

d)
E(x)=0 <===> 2(x-8)(x-2)=0

Tu conclus.