👤

FRstudy.me: votre ressource incontournable pour des réponses expertes. Posez vos questions et obtenez des réponses détaillées et bien informées de notre réseau de professionnels expérimentés.

De nombreux peintres et architectes de la renaissance, en particulier Léonard de
Vinci, ont évoqué l'existence d'un rectangle de proportions "idéales", vérifiant
la propriété suivante:
"Lorsqu'on ôte au restangle considéré un carré
construit sur sa largueur, on obtient un nouveau rectangle, plus petit,
semblable au rectangle d'origine, c'est à dire que les rapports longueur sur
largeur sont les mêmes."

A. On note L et l la longueur et la largeur du
rectangle "idéal" ABCD.
On pose φ = L/l

1. Démontrer que l'on a: l/L
= (L-l)/l et en déduire que φ est solution de l'équation x² - x -1 = 0


2. Vérifier que x² - x -1 = (x - 1/2)² - 5/4
 Je bloque sur toutes les questions de l'exercices, aidez moi s'il vous plaît.


Sagot :

Bonjour,
Le nouveau rectangle à un des côtés qui mesure l et l'autre qui mesure L-l.
Comme il a les mêmes proportions que le rectangle "idéal", nécessairement 
l/L = (L-l)/l (ça ne peut pas être L/l=(L-l)/l sinon ça voudrait dire que L=L-l ce qui serait absurde)
donc I/L=L/l -1
On pose x= φ (=L/l)
ça donne 1/x=x-1
donc x-1-1/x=0
donc (x²-x-1)/x=0
donc x²-x-1=0
2) je te laisse vérifier et ensuite j'imagine qu'il faut calculer φ, donc on factorise
(x - 1/2)² - 5/4= (x-1/2+racine(5/4))(x-1/2-racine(5/4))
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Merci de visiter FRstudy.me. Revenez bientôt pour découvrir encore plus de réponses à toutes vos questions.