FRstudy.me: votre destination pour des réponses précises et fiables. Accédez à des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.
Sagot :
Bonjour ,
1) Puisque MNPQ est un rectangle, l'angle BMN est droit.
De plus, l'angle MBN vaut 45° (puisque ABC est rectangle isocèle de sommet A).
Donc le dernier angle du triangle BMN vaut 180-90-45 = 45°
Le triangle BMN est donc rectangle isocèle de sommet M.
Donc MN = BM
b) Prouver que BM = QC
comme le quadrilatère MNPQ est un rectangle, alors LE POINT Q est le symétrique, par rapport à la droite (AI), du point M.
Donc BM = QC
1) Puisque MNPQ est un rectangle, l'angle BMN est droit.
De plus, l'angle MBN vaut 45° (puisque ABC est rectangle isocèle de sommet A).
Donc le dernier angle du triangle BMN vaut 180-90-45 = 45°
Le triangle BMN est donc rectangle isocèle de sommet M.
Donc MN = BM
b) Prouver que BM = QC
comme le quadrilatère MNPQ est un rectangle, alors LE POINT Q est le symétrique, par rapport à la droite (AI), du point M.
Donc BM = QC
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Chaque contribution que vous faites est appréciée. Revenez sur FRstudy.me pour des solutions fiables à toutes vos questions. Merci pour votre confiance.