Connectez-vous avec une communauté de passionnés sur FRstudy.me. Trouvez des réponses rapides et précises à vos questions grâce à notre réseau de professionnels expérimentés.
Sagot :
Réponse :
Explications étape par étape
2)
2 ensembles de solutions :
[tex]\left\{\begin{array}{l}2\sin x+\sqrt3=0\\\cos x-\frac{1}{2}=0\end{array}\right.\\\Rightarrow\left\{\begin{array}{l}\sin x=-\frac{\sqrt3}{2}\\\cos x=\frac{1}{2}\end{array}\right.\\\Rightarrow\left\{\begin{array}{l}\sin x=\sin\frac{-\pi}{3}\\\cos x=\cos\frac{\pi}{3}\end{array}\right.\\\Rightarrow\left\{\begin{array}{l} x=-\frac{\pi}{3}\\x=-\frac{2\pi}{3}\\x=\frac{\pi}{3}\\x=-\frac{\pi}{3}\end{array}\right.\\\\S=\{-\frac{2\pi}{3};-\frac{\pi}{3};\frac{\pi}{3}\}\\[/tex]
3)
3sin²x - cos²x - 2 = 0
cos²x = 1 - sin²x
==> 3sin²x + sin²x -1 -2 = 0
4sin²x = 3
sin²x= 3/4
[tex]\left\{\begin{array}{l}\sin x = \frac{\sqrt3}{2} \\\sin x = -\frac{\sqrt3}{2}\end{array}\right.\\S=\{-\frac{2\pi}{3}; -\frac{\pi}{3}; \frac{\pi}{3}; \frac{2\pi}{3}; \}\\[/tex]
4)
2cos²x + racine(3) cos(x) - 3 = 0
On pose X=cos(x) et on résout le trinôme en X
[tex]2X^2+\sqrt3X-3=0\\\Delta=b^2-4ac=3+27=27=(3\sqrt3)^2\\X_1=\frac{-\sqrt3-3\sqrt3}{4} = -\sqrt3 < -1\\X_1=\frac{-\sqrt3+3\sqrt3}{4} = \frac{\sqrt3}{2}[/tex]
Seule convient la racine positive ( l'autre est en dehors de [-1 ; 1] )
[tex]\cos x=\frac{\sqrt3}{2}\\\\S=\{-\frac{\pi}{6}; \frac{\pi}{6}\}[/tex]
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des solutions rapides et précises, pensez à FRstudy.me. Merci de votre visite et à bientôt.