👤

Découvrez de nouvelles perspectives et obtenez des réponses sur FRstudy.me. Rejoignez notre plateforme pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Bonjour
Je suis en 1ere S et j'aurais besoin de votre aide pour cet exercice svp
Merci d'avance a celui ou celle qui répondra


Bonjour Je Suis En 1ere S Et Jaurais Besoin De Votre Aide Pour Cet Exercice Svp Merci Davance A Celui Ou Celle Qui Répondra class=

Sagot :

Ayuda

bonjour

pistes :

équation tangente = f(a) + f'(a) (x-a)

donc ici a = 1 puisque tu cherches la tangente au point d'abscisse 1.

tu dois donc calculer la dérivée de f(x) pour pouvoir calculer f'(a)

f(x) = 2x+1 / 2x-1

f'(u/v) = (u'v - uv') / v²

à toi :)

Bonjour;


1)


On a : f(x) = (2x + 1)/(2x - 1) ;

donc : f'(x) = (2(2x - 1) - 2(2x + 1))/(2x - 1)²

= (4x - 2 - 4x - 2)/(2x - 1)² = - 4/(2x - 1)² .


Le coefficient directeur de la tangente à Cf au point A d'abscisse 1

est : f'(1) = - 4 .

Comme cette tangente passe par le point A d'abscisse 1 et d'ordonnée

f(1) = 3 ; donc l'ordonnée à l'origine de cette tangente est : 3 + 4 * 1 = 7 ;

donc l'équation réduite de la droite (d) est : y = - 4x + 7 .


2)

La tangente à Cf au point B d'abscisse b a pour coefficient directeur

f'(b) , et comme elle est parallèle à la tangente à Cf au point A , donc

elle a le même coefficient directeur que celle-ci , donc : f'(b) = - 4 .


3)

f'(b) = - 4 ;

donc : - 4/(2b - 1)² = - 4 ;

donc : 1/(2b - 1)² = 1 ;

donc : (2b - 1)² = 1 .


4)

On a (2b - 1)² = 1 = 1² ;

donc : (2b  - 1)² - 1² = 0 ;

donc : (2b - 1 + 1)(2b - 1 - 1) = 0 ;

donc : 2b(2b - 2) = 0 ;

donc : 4b(b - 1) = 0 ;

donc : b = 0 ou b - 1 = 0 ;

donc : b = 0 ou b = 1 ;

donc le point B a pour abscisse 0 ou bien 1 : dans ce dernier cas

c'est le point A ; donc le point B est : B(0 ; - 1) .


5)

L'ordonnée à l'origine de la tangente à Cf au point B

est : - 1 + 4 * 0 = - 1 ; donc l'équation réduite de cette

tangente est : y = - 4x - 1 .


Pour la construction ; veuillez-voir le fichier ci-joint .

View image Aymanemaysae
Merci de votre participation active. Continuez à poser des questions et à partager vos réponses. Ensemble, nous pouvons créer une ressource de connaissances précieuse pour tous. Pour des réponses rapides et fiables, pensez à FRstudy.me. Merci de votre confiance et revenez souvent.