👤

Obtenez des conseils avisés et des réponses précises sur FRstudy.me. Posez vos questions et obtenez des réponses détaillées et bien informées de notre réseau de professionnels dévoués.

Exercice 1:
1)Prouver que le reste de la division euclidienne d'un nombre entier positif impair par 2 est 1.
2)Prouver que le produit d'un nombre entier positif pair et d'un nombre entier positif est pair.
3)Prouver que le produit de deux nombres entiers positifs impairs est impair.
4)Prouver que la somme de deux nombres entiers positifs est paire.



Sagot :

Division euclidienne: D = d.Q+R

1.un nombre impair est de la forme 2n+1 (avec n entier)

2n+1= 2.n + 1 relation de la division euclidienne: 2 est diviseur n quotieent et 1 est le reste.

2.soit 2n le nombre pair et k l'entier 2n.k = 2.(kn) kn entier car produit de deux entiers donc 2.kn pair

3.soit 2n+1 et 2k+1 les deux impairs

leur produit (2n+1)(2k+1) = 4nk+2k+2n+1 = 2 .(2nk+k+n)+1

(2nk+k+n) est un entier donc le produit est impar (produit d'un entier par deux  aumentĂ© de 1

4.faux car par exemple 9.5=45 qui n'est pas pair.

S'il s'agit de du produit de deux nombres paris soit 2n et 2k ces nombres 2n.2k = 2(2nk) et 2nk est entier donc produit pair

Votre engagement est essentiel pour nous. Continuez à partager vos expériences et vos connaissances. Créons ensemble une communauté d'apprentissage dynamique et enrichissante. Pour des solutions rapides et fiables, pensez à FRstudy.me. Merci de votre visite et à très bientôt.