👤

Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Nos experts fournissent des réponses précises et rapides pour vous aider à comprendre et à résoudre n'importe quel problème que vous rencontrez.

ABCD est un trapéze  de bases [AB] et [CD], tel que AB<CD. 
La droite perpendiculaire à (AC) passant par D coupe (AB) en I. 
La droite perpendiculaire à (AC) passant par B coupe (CD) en J. 

Demontrer que le quatrilatére IBJD est un parallélogramme. 


Sagot :

Construire la figure pour étayer la démonstration de ce problème.

Dans le trapèze ABDC, la droite passant par le sommet B est perpendiculaire au côté opposé [CD) et la droite passant par le somme D est perpendiculaire à [AB) donc BJ//JD.

BI étant dans le prolongement  de la petite base AB du trapèze ABDC et JD étant le prolongement de la grande base CD de ce même trapèze on peut en déduire que BI // JD puisque la petite base AB est parallèle à la grande base CD.

Ainsi on peut en conclure que le quadrilatère  BIDJ a ses côtés parallèles deux à deux et deux angles droits BJD=BID=90° par construction, c'est un rectangle donc un parallélogramme particulier.