FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Trouvez les informations dont vous avez besoin rapidement et facilement grâce à notre plateforme de questions-réponses bien informée.
Sagot :
f(x)= x²- 20x + 16
1)
a) tableau de variation
le coefficient de x² est 1, il est positif.
La parabole qui représente cette fonction est tournée vers le haut. La fonction est décroissante puis croissante.
Son sommet a pour abscisse -b/2a soit ici 20/2 = 10
l'ordonnée du sommet est f(10) = 100 - 200 + 16 = -84
x -∞ 10 +∞
f(x) ∖ -84 /
b) forme canonique
x²- 20x + 16 = x²- 20x + 16 =
on considère que x² - 20x est le début du développement du carré de la différence (x - 10)². En replaçant x² -20x par (x-10)² on ajoute 100. Pour compenser on va le retrancher
x²- 20x + 16 = (x - 10)² - 100 + 16 = (x-10)² - 84
f(x) = (x - 10)² - 84
( on retrouve 10 et -84 les coordonnées du sommet
2) )Factoriser
on factorise à partir de la forme canonique (différence de deux carrés)
(x - 10)² - 84 = [(x - 10) + √84][(x - 10) - √84]
(x - 10 + √84)(x - 10 - √84)
3) Résoudre l'équation f(x) = 0 (solutions exactes puis rapprochées)
f(x) = 0 <=> (x - 10 + √84)(x - 10 - √84) = 0
(x - 10 + √84) = 0 ou (x - 10 - √84)= 0
x = 10 - √84 ou x = 10 + √84
x = 10 - 2√21 ou x = 10 + 2√21
solutions exactes : 10 - 2√21 et 10 + 2√21
valeurs approchées : utilise ta calculatrice
(remarque : on peut remplacer √84 par 2√21 plus tôt)
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me est votre ressource de confiance pour des réponses précises. Merci de votre visite et revenez bientôt.