👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Accédez à des milliers de réponses vérifiées par des experts et trouvez les solutions dont vous avez besoin, quel que soit le sujet.

Bonjour, j'ai un devoir maison. J'ai besoin que vous m'aidiez, s'il vous plait.

 

- a et b désignent deux nombres entiers sictement poisitifs, avec a>b.

 

On rapelle que: PGCD ( a;b ) = Pgcd (b; a-b ) 

 

Démontrer que deux nombres entiers consécutifs sont premiers entre eux.

 

Deux nombres pairs consécutifs sont-ils premiers entre eux? Justifier la réponse.

 

Je n'ai pas fais la leçon sur les nombres consécutifs, aidez moi s'il vous plait! Merci d'avance! 



Sagot :

Consécutifs : qui se suivent.

 

PGCD(n,n+1) c'est toujours 1 (pas de diviseurs commus aux 2)

 

pgcd(2n, 2n+2) est toujours, au moins, égal à 2

Bonjour,


Soit a le plus petit des nombres; le plus grand = a+1.


Soit d un diviseur commun à a et à a+1.


Il existe des nombres entiers différents k et k' tels que : a = d*k; a+1 = d*k'


a+1 - a = 1
a+1 - a = d*k' - d*k = d*(k'-k)


d*(k-k') = 1; k-k' étant un nombre entier différent de zéro, d divise 1.
Tous les diviseurs communs à a et a+1 sont des diviseurs de 1; le seul diviseur commun possible est donc 1 : a et a+1 sont premiers entre eux.


Pour ce qui est des nombres pairs, ils ne peuvent pas être premiers entre eux puisqu'ils sont tous divisible par 2.


J'espère que tu as compris


A+